



































































































































DIFFERENTIAL GEOMETRY

I INTRODUCTION

lecturer Jack Smith j.smith dpmms.cam.ac.uk

Twoways tothinkabout manifolds

if
b

Extrinsice s
a

or e.g soins to equation x yet C IR

eg soon e IR MTM I detM l

2 Abstractmanifolds reasonable topological spacesuchthat abouteachpointp a local coordinates suchthat
the coordinate transformations are smooth

Intrinsic

will focus on abstract manifolds But Actually thetwo definitions are equivalent

Basic constructions with manifolds

Tangent space linearapproximation tomanifold atsome point
less obvious in abstract world

smooth maps betweenmanifolds t derivatives

Vector fields

É
and an

submanifolds Embedded manifolds become submanifolds of IR

Could give manifold more structure and consider geometric consequences

eg group structure lie group

tangent space at identity becomes a lie algebra
a mapfromthe lie algebrainto the lie groupitself expmap

e g GlenIR tangentspace at id Matan IR Lie algebra structure AB ABBA
expmap A x I at it






































































































































Some questionswe'llthinkabout

Howdoyou differentiate a vector field

on IR itseasy partial derivatives

whatabouton anembedded surface E in IR

Problem cantdifferentiate

e

directions outofsurface downwards

problem 2 if youdifferentiate
along directions in surface mayend

up with something pointingoutofsurface
Not Intrinsic

son extrinsicpicture goalongsurface
orthogprojectanswerontosurface

seems reasonable By thismaydepend
thenon the embedding

so this is a subtlequestion

To answerthisquestion we'll use

tensorsanddifferential forms
Connections

Parallel transport moving a vector along a path sit itsderivative is zero
curvature

A more abstract example

spacetime manifoldX
Quantum particle described bya wavefunction Y X e

what matters in 141and relative phases of Y and 42

Examples classes wednesdays

27 Oct 1.30 3pm
10 NOV

24 Nor






































































































































I MANIFOLDS AND SMOOTH MAPS

1 1 Manifolds

Dfn 1.1 a topological n manifold is a topological space X s t fpex I an open nhood Uof p
in X an open set VCIR and a homeomorphism 4 U JV

We also require X to be Hausdorff and second countable

Hausdorff for distinct points pi p EX I disjoint open Ui uz sit p Elli preuz

unused

second countable I countable basis for the topology i.e I countable collection of
open sets Ui sit any openset is a union of the Ui

Exm 1.2 IR is a topological manifold
For any perch take U IR and y id IR IR
IR is Hausdorff e.g because its metrisable
A countable basis is given by open balls with rational centre and rational radius

Rem 1.3 i Hausdorff t second countable is important but not restrictive in practice
For a space locally homeoto IR it's equivalent to X is metisable and has countably many

components

Iii The two conditions are inheritedby subspaces

Exm 1.4 If X is a top n manifold thenso is anyopen set wax
Given PEW pick 4 U IV

p p
from X Then take 4 unw unw 4 unw

is a homeo






































































































































Terminology 4 is called a chart about p
U is a coordinate patch
If ni an are the standard coordinates on IR then
a 04 azote anole are called local coordinates

R

at
an IR

The inverse of a chart is a parametrization
If 4 u Iv and 42 425ve are two charts the corresponding local coords mis inn
and ya syn are related by transition function 4209

Den 1.5 A mapfrom anopen subsetof IR to Irb is smooth if it hasall partial derivatives ofallorders

Given F X IR

preliminary dfa f is smooth if fo y is smooth for all charts 4 i.e flan un is smooth as a
function of local coordinates

Dfn 1.6 An atlas for a topological n manifold is a collection Ya U2 V2 yet of charts that
cover X deux X

An atlas is smooth if all transition functions Up Ya are smooth as in Den1.5

Given a smooth atlas A a function f X IR is smooth wit IA if foYa
is smooth V Ya E IA






































































































































Lem 1.7 f is smooth wit IA iff YPEX I a chart Ya about p such that fo ya is smooth

Pf only if u

converse take Up Up Up Wis f oYp is smooth Know VpeUp I Ya s t fo Ya is smooth
But then near Cplp we have

foUpl fo ya o 42045
I smtooth

Insmonohness

09 is smooth

Cor 1.8 Given a smooth atlas all local coordinate functions are smooth

Dfn 1.9 Twosmooth atlases IA and IB are smoothly equivalent if AVB is smooth
A smooth structure on X is an equivalence class of smooth atlases
A smooth n manifold is a topological n manifold equipped with a smooth structure

Mm
d 1Bare smooth atlases that are smoothly equivalent then f is smooth wit A

iff its smooth wit1B

Den 1.11 If X is a smooth manifold then f X IR is smooth if its smooth wit some equivalently all
smooth atlases representing the smooth structure

Exm 1.12 IR is a smooth n manifold with smooth structure defined by theatlas id IR IR

open subsets as before

If X Y are smooth in manifold n manifold then Xxx is a smooth mtn manifold defined by
product charts

Rem 1.13 i Being a topological n manifold is a propertyof a topological space
ii Being a smooth manifold is a property ply a choice of smooth structure
iii For ne3 every topological n manifold admits a unique smooth structure

in For n it a topological n manifold may admit no smooth structure e.g the Es 4 manifold

or multiple different smooth structures e.g exotic St exotic 1124 But these results are hard

Den 114 For a smooth n manifoldX the integern is the dimensionofX dink

Note you're free toaddcharts to your atlas as long as they preserve smoothness






































































































































Example 1.15
i given PEX and an opennhood W of p we can always take add a chart about p contained in w
ii can choose add local coordinates about p such that p corresponds to the origin in these coords
take any chart 4 about p and consider p pep

Y peu Yen
Y 410 means subtract inIR

v yep
4 XCP

Exm 1.16 The nsphere sh is the n manifold whose underlyingtop space is yearn ily121 Cant
with subspace topology The smooth structure is defined bythe followingatlas
There are two charts Yt Ut T IR where Ut S I 0,0 0,111 whole northsouth

and YI is stereographic projection shorn

p

e p tip

IR

formula Yt yn ynt Fyne y Yn

check transition functions are smooth

Local coordinates n satisfy Nit It
The height function yn is smooth since its givenby yn I

t

11 111 t on Ut






































































































































1 2 Manifolds from sets

observe If X is a manifold the charts know the topology in the sense that a set wax is open
iff Ya W is open in R for all charts ya Ya are homeomorphisms

check

Suppose we're given
a set X
a collection Ux net of setscovering X
for each a an open set vacirn and a bijection ya Ua Va

Suppose that tap the set Ya uanup is open in Va or IR and the map
Yp060 Ya uanup XpCleanup is smooth can car

Den 1.17 Nonstandard call such data a smooth pseudo atlas on X and the Ya pseudo charts

Declare a set w in X to beopen iff ta the set YauanW is open in IR

Lemma 1.18 This defines a topology onX

check

Prop 1.19 Apart from the possible failure of Hausdorff and second countable the resultingspace is a
topological nmanifold and the pseudoatlas is a smooth atlas hence it defines a smooth structure

pf We need to check that each Ua is open and each la is a homeomorphism i.e that
WC

W open in X E Ya w is open in Va

is obvious check we declared w tobeopen in x if t d 4acuanw isopenin inn But WCUx
eatuanwl Ya W c la ua Va is open

suppose 4a w isopen Then takeany f Wis 4pwhup is also open

We have Yp whap 4040 oYa Whup
YpoYa40444 744EUR usingfact Ya is bijection

Ya046 open

preimage of opensetisopen under cont map

Say two smooth pseudo atlases are equivalentif their union isa smooth pseudoatlas

lemma 1.20 Equivalent smooth pseudoatlases define thesame manifold structure






































































































































Example 1.21 The ndimensional real projective space trip isthe space oflines inAnt

Any nonzeropoint in IR defines a point case trip
All lines arise in this way
x y E n ay for some ne IR 05

So we can labelpoints of IRIP by the ratio no inn called homogeneous coordinates

Define the following pseudocharts
For i o in let

U Exo inn ni to

and define a bijection 4 u IR by Eno inn a mis n'is inn
ni

This is a smooth pseudo atlas and makes RIP into a smoothmanifold examplesheet 1

note change trip to er and it all still works nicely forms smooth an manifold

Example 1.22 Take X IR x 1,23 2 where x 1 acne if a co

Pseudoatlas given by Rx is I IR But X is not Hausdorff I
cant
separate
0,1 and 0,2Remark 1.23 Need notstart with a set X but could start with

Va in IR and specify how to glue them in some smooth way

1 3 Smooth maps

Fix manifolds x Y with atlases Ya 42 Va aea and Yp Sp TB pets

Dfn 1.24 a map fix Y is smooth if its continuous and fair
Yp o F o ya Ya F sp nva Tp

is smooth as a map betweenopen subsets of IRdim and Rain

Rem 1.25 we ask f to becontinuous so that 421 F Spl is open so that smoothness makes sense

Example 1.26
i idx is smooth
ii Anyconstant map is smooth
iii The projections pr xxx X and pre xxx Y are smooth
iv The inclusion shes int is smooth

lemma 1.27 we have the following basic properties
Ii A map f X IR is smooth iff its smoothin the sense of 1.1
ii a map between open subsets of 1hmand IR is smooth iff its smooth in the multivariable
calculus sense

iii smoothness is local in the source its enough to check it locally neareach PEX
iv a composition of smooth maps is smooth






































































































































Example 1.28 Viewing Antas IR can think of 5 as the unit sphere in Ant
Any point aces then defines a point One clip This gives a map H sent dip
called the Hopf map This is smooth ex sheet 1

Dfn 1.29 A diffeomorphism x Y is a smooth map with a smooth twosided inverse

Exm 1.30 Alp is diffeo to s Soit makes sense tothink of dip as a sphere the Riemann sphere

Lem 1.31 If XY are diffeomorphic nonempty manifolds dimx dimY

pf pick a point pex and a diffeo F X Y Pick charts 4 u Vabout p y S T about

F P By shrinking charts wiog Flu S

U s

41 14
pain's v s T Cardin

let G yo Foi
Vc IRdim and TCardin

1 my

Then DeepG Dyce H I inusual multivariable calculussense are mutually inverse linearmaps
point I pain dinx dimy

Fix an n manifold X and a point pex

Den 1.32 a curve based at p is a smooth map r I X I some open nhood of OER
such that 810 p We say two curves r re agree to firstorder at p if there exists a
chart 6 u vabout p suchthat

402 o 4022 o x
Ttimederivative Curt tea

as vectors in IR

Idea
I wog yep o






































































































































Lemma 1.33 If t holds for somechart 4 about p then it holds for all suchcharts aboutp

pl given a chart 4 about P write Tpefor the map

Hpl curvesbased at p IR
a canberepresentedby

2 hor o the Jacobian of9204
ecel so composition an
multiplicationare equiv

Now suppose 4 ez are two different charts about p Then by the chain rule Itp Atap
where A is the derivative of 4204 at 4 p

pbyden of smoothatlas y ou is smoothandso Jacobiandeterminantisnonzero

Note A is invertible so for curves 2,22 we have

Hpl ri IT re a Itp ri Hp re

Cor 1.34 Agreementto the first order is an equivalence relation on curves based at p

Den 135 The tangent space to x at p is denoted Tpx is

curves based at
Yagreementorderfirst

We'll write er for the tangent vector represented by r

Prop 1.36 Tpx naturally carries the structure of an ndimensional vector space

If for each chart 4 about p Tpl induces a map Tpx IR This is tautologically injective

We claim its surjective If so then Tpl will identify tox with Irn and the identifications
for different 4 differ by a linear automorphism of IR the map A fromabove So the induces
vector space structure on Tpx is independent of 4

It
m t

festive
Take vein and considerthe curve yr t 4 Cece tu defined

on some small nhood of o c e e Basically take straight line passing throughalp in chartandv

IR

This satisfies Ipl ru v






































































































































Dfn 1.37 if ni inn are local coordinates defined by 4 and er en is the standard basisof
IR then write Fi Oni di for the tangent vector givenby ape ei

Intuitively Jai is the direction obtained by moving alongthe ni axis I e keep all other n
constant and increase ai at unit speed

eg M

f a

a
Fi III In
idea well

ay Ipl le
Cartesian coords polarcoords

ay itpay ei

related by A so scaredWarning The vector 2n depends on all Nj not just ni

Eg F y yn are local coords sit y ni then it neednot betrue that 2y 2x

Lemma 1.38 Ey I 3 E

pf let y 92 be the charts defining n y Bydefinition ay tph Ceil Let A D 4204
so that it 42 Aotp Get ay Itp A ei Note A DX of so
a e I es Hence

a 34 35 35
e.g I in

2g Itp 5 It ei É 3in

I 3 I try pay is linear

Rem 1.39 If Cr E ai2mi Then Cho Tpt r E ai e

ithcomponent
ni or o

Hence ai ni or o

so the coefficients of the ani are the derivatives of the ni along r

The tangentspace of X at a point p is represented by the set of curves up to firstorder basedatp under
the map Tpl Tpx has the structure of an dimx n dimensionalvectorspace Abasis of Tpx isthen
ax Tpa Ceil Any choiceof chart 4 aboutp will do they're all equivalent relatedby A above

Equivalently canconsider themas linear maps Xp calm IR by the action

2 eTpx I f or o at for to
which obeys the Leibniz rulefrom the product rule on differentiable functions in Irm






































































































































1 5 Derivatives

Fix manifolds X Y and a smooth map F X Y vi I x so for I Y
basedat P basedat Hp

Dfn 1.40 the derivative of f at p written Dpt is the map Tpx TeaY Er for
We sometimes write Dpt as Fx and call it the pushforward

Lemma 1.41 The map Dpt is well defined and is linear

pf Fix a chart 4 about P Y about FCP We have

Ifcpf For yo For o

yo top 1 of or o

Tape r

where T D voto 4 So if r r are twocurves based at p with Er re then
For Fora since Tpl ri 408 o 6022co Tp4 ra

So Def is well defined and fits into the commutative diagram

Tpx
P

s Tpy

P
in

y
lidiny

So Dpt it T o Tp andhence islinear

If my are the local coordinates associated with 4 w then yo Foy expresses F as giving
the y's in terms of the a's

So T is 3 Hence Dpt Oni F 3 29

Rem 1 42 i The new notion of derivative coincides with the usual one for maps F IRM IR
ii If f is a function X IR then Df ani Eci
Iii For a curve r based at p we can write cry a boy

standard coordinate onIR

Prop 1.43 For smooth maps X E Y Z we have

Dp Got DeepG oDp

FpfFor Er in Tpx both sides give Go for
Remember again DqG and Dr F are maps between vector spaces






































































































































I VECTOR BUNDLES AND TENSORS

2 1 The tangentBundle

Given local coordinates ni an on an open set Ucx write an an for the components of a
tangent vector with respect to an ann this gives coordinates

ai na na an aan pegTpu IR

Doing this for all coordinate patches U on X defines a smooth pseudo atlas on

TX payTpa

Definition2 1 the tangent bundle of X is TX equipped with the manifold structure defined by this
pseudoatlas It inherits Hausdorffness and second countability from X

Example 2.2 If we think of s as e'to OEIR c IR d then although the local coordinate O is
multivalued if we try to define it globally the vector 20 is well defined at every point So themap

p e azo ETps e Ts p a e s XR
is a diffeomorphism

We'll denote a point in TX by pv where pex and ve Tpx

Definition 2.3 A vector field is a smooth map v X TX such that rep lies in Tpx for all p
i e v pts perp for some upETpx

2 2 Vector Bundles

The tangent bundle TX of a manifoldX looks like a smoothly varying family of vector spaces
parametrized by X Such families occur in many other situations

Definition 2 4 A vector bundle of rank k over a manifold B is a manifold E equipped with
A smooth surjection IT E B

An open cover Ua aea of B and for each a a diffeomorphism

Ia It Ua ya x irk
such that

pr oda T
t a p the map Ipo a has the form

Uanup x irk uanup xIR
bineRK b gpa b x

for some smooth map gpa uanup GLCk IR






































































































































The manifold E is the totalspace Bis thebase it is the projection it p are the fibres denoted Ep
and the Oa are local trivializations The gpa are transition functions

Remark2 5 each fibre Ep e has the structure of a kdimensional real vectorspace

Remark 2.6 really each trivialization Ia is like a chart and the collection dalaea is like an atlas
There's an obvious notion of equivalence between two collections and the equivalence classis what we
care about

Remark 2.7 can similarly define complex vector bundles

example 2.8 E BxIR ua B É E BxIR theobvious map it er we denotetherankk
This is thetrivial vector bundleofrank k overB we say I is a global trivialization trivialbundleby IRIif

the base Bisclear
Example 29 Tx is a rankn vector bundle where he dimx

Dfn 2.10 A sectionof a bundle it e B is a smooth map s B E such that Hos ids

Example 2.11 The zero section is given by scp pro te

Example 2.12 Avector field is a section of ex Picture

E
i

FI B

Dfn 2.13 Given a smooth map F B Bz and ti E Bi a morphism of vector bundles
E Ez covering F is a smooth map G E Ez such that
it G For

Up the induced map Ei Eileen is linear

E G Ez it og p u a w a
to it pv Is p its e p

I a B Hence amaps fibrewise Elp ez p

An isomorphism between vector bundles over B is a morphism covering ids with a two sided inverse
A bundle isomorphic to a trivial bundle is called trivial

Example 2.14 TS is trivial Ts s'xiR p a2o Pia

Example 2.15 A morphism G Ir E

B

d d

I notation

g mo sap Gilpin rank a trivialbundle

muttitlication
byt






































































































































to see that Sms G pit tsk gives a bundle morphism clearly themapis smooth locally if

part is an element of E then t peu p tu which is smooth and respects the smooth structure
on overlaps we have that G pit Escp

I
G S E

P
Y 5

say s p is pJlp 8 p Rt then idopr B B Leavinp and to G p.tl is p trip up
so G covers id of course the induced map is linear

More generally morphisms IRI E correspond to ktuples of sections The morphism is an isomorphism

iff the k tuple forms a basis in each fibre

Definition 2 16 Given a rank k vector bundle E a rank L subbundle is a subset f of E suchthat
UpEB I a trivialization of Te u uxir under which He u gets sent to Ux Reto

T
ovectorofcan then define Elf and get morphisms F E Elf length K l

23 Constructing Vector Bundles by Gluing

To define a vector bundle over B its enough togive
A set E
A map it E B
An open cover Ua of B
For each a a bijection Ga Ua waxirk

such that pr oda It andon overlaps Ipoda pix to Pignatelli for some smooth

gpa uanup Gills R

Then our pseudoatlas construction makes E into a manifold automatically Hausdorff t secondcountable and

the Ia become trivializations

Example 2.17 let B trip linesin Rn Let E pix etrip x irn x lies in the line labelledbyp

Define it E B by pul p open cover ui exo inn ni to i o n

Define da it ai uixir by

exo inn rn exo inn axi

check well defined

Then we have pr oof it and ofoff exo inn t exo inn Et

What are the transition functions g ainu all i RI IR
Exo inn I which is smooth since xi.xs.to on minus

Thisis the Tautological bundleover trip line bundle






































































































































In fact we can drop the set E andjust specify an open cover un of B and smooth maps

gpa uanup Gilkart such that

gaap idiot ta p
ta p r gra grpgpa on uanuphur cocycle condition

Then define E Y 40Xenanewlyn pear grace ll
The conditions above make a an equivalence relation

Example 2.18 For any rek define a line rank 1 vectorbundle over trip trivialized over the Ui
where gji Ii

r
This is denoted Oman r The tautological bundleis Orient11

Lemma 219 If IT E B is a rank k vector bundle trivializedover Ua with transition functions gpa then
its isomorphic to the output ofthe above construction

Corollary 2.20 to show two bundles are isomorphic it suffices tofind trivializations over the same open cover

with the same transition functions

Dfn 2.21 Given a bundle it E B and a smoothmap F B B the pullback bundle F E has
total space

ph EFeel

with thefollowing bundle structure suppose E is trivialized over some Ux of B with transition functions

gpa then F'E is trivialized over F ual with transition functions gpaof
F'E E Idea essentially

transplant the fibres
fromthe imageof F

in B onto thepreimage
points in B

i e FE Excel

Dfn 2.22 The dual bundle E is the bundle over B whose total space is

Ep takedualoffibres
per

Trivializedover Ua with transition functions gpa of thedual representation

Example 2.23 If E is locally trivialized by smooth sections si sk over UCB then the
fibrewise dual basis defines smooth sections on or of E over U that trivialize it

locally each vector bundle looks like MaxIR for some chart Ua we saw before that a bundleistrivial
if I a bundle morphism II E covering the identityonB we can thinkaboutthis locally I a bundlemorphism

ax11k It ua namely Ia For I E this is equivalent to a local section and for Ik E this is equivalent

to a collectionof k localsections since this is an is these k sections form a basis in each fibre

Motto E is locally trivial iff t a collectionoflocalsections forming a fibrewise basis






































































































































2 4 The Cotangent Bundle

Fix some nmanifoldx

Den 2.24 The cotangent bundleofX is the dual of the tangent bundle Standardnotation Ttx The
fibre over a point pex is denoted Tp x and is called the cotangent space at p

Consider functions at p Usf U anopennhood of p f u IRsmooth

We say fi fi agree to first order at p if Dpf Defo A

Proposition 2.25 there's a canonical isomorphism

functions atply tp x

Ifygyector
bundlehasfibres Rn i.e linearmaps IR IR I IR via the standardpairing so to show

thatwe canthink of Thxas the equivalence classes of functions that agreeupto firstorder we justneed to show
thateachequivalence class defines a linear map curvesbasedat p firstorder IR thatis bijective

asin all thedefined linearmaps asa space are in bijection with Rn

Proof Theres a pairing

functions at p x curves basedat P s IR f r to for o

This induces a map from functions at p Tptx f to er i for o

Independence of
choice of representative

fo o fo 4 oyou o

fo 4demo 408
fo4561 o 40221
for o

r TaiGi then

In coordinates this mapis off r for o

E ai f fo sail o
q f to Zaidai Fai fi p 1 1 Eai Ei p

We want to show that O is surjective and that off Offal a f rfa

surjective The coordinate functions themselves ni sun are sent to theduals of 2xi
I e Oh Eai avi mail that is xi 2x Sig

Last part observe that Off Offa 3h It p ti Dpt Dpfa f of

Notice that if f a it is a smooth function by the proposition f defines anelementof Ttx for
each pen

Lemma 2.26 This defines a smooth section of Ttx over U We denote this by af

pf We saw in the previous proof surjectivity that Ochil dai Ie that dais doin are






































































































































pl I i s y e
fibrewise dual to Ex i Zen Hence by example 2.231 dat din is a smooth basis

of sections By t we get

df 73 drei Otay Eai dai Fai3 p

Eai 2mi ajsince dei are smooth andso is Exi af is smooth

f U IR is smooth and peu then we getan element of the cotangent space Tp x In
particular we get an element of Ttx for al peu I e D peu f gives rise to an assignment
of a corrector over each point pen This assignment is smooth i e is a section which we denoteby
df locally we saw that we have a basis of local sections denoted dxi which are dual to
the local basis on for the tangent bundle Then dot p doitp Eai axis a and
hence by

af p at I aid I ai Ici p
so we can write

de I3 da

lemma 2.27 A section of Ttx is called a t form The l form df is called thedifferential off
By construction

df u derivative of f inthe directionof v If BEdai Ej É
Remark 228 each die depends only on ni in contrast to Eci which maydependon all ni's

Dfn 2.29 Given a smoothmap F X Y the map Def Treaty Ttx is called the pullback
by F denoted Ft

Lemma 2.30 If g Y IR is a smooth function then F dg d got

pf Given a vector r e Tpx we have

F dy er dgDefter dg ceorl dg For
go For o gofor o

goF or o goF or o

d goF er dgot

m






































































































































My own additions

Dfn 1.3 A local frame of E over U is an ordered K tuple si ask of smooth sections of E over u
so that for each peu sept skip forms a basis of Ep

Gaim a Fritiatisation of E on U is equivalent to a local frame of E on u

pl suppose Ua is a cover of B and we have a trivialisation say

cha ya

la diffeo

Then we can define a local frame by si Ua it Ua site IL p ei where ei isthe
standard basis of Rk Clearly then on Ep sicplsin.sk acts like the standard basis

Now suppose on Ua we have a local frame si sin we want todefine Qa well forany peux
silpl skips forma basis andso in fait if yeEp then I scalars ay in s t

up Érisiepl
Thisis suffilient datatodefine Ia we define Ia e up p en ich which is clearly a map
it Ua wax irk It is also clearly smooth in p since the si are smoothinp In fact its
a diffeo da p ci ck ti p up where up Ficisicel and this is bijective bc sicpl forms
a basis It is a linear isomorphism on thefibres since it's really just swapping one basis for
another

On the pullback bundle if f B Ba then for it E Be a vectorbundle we define

ftE e e e Bix E tip ice

This is a welldefined vector bundle with projection it ft E B pre top The following diagram
commutes

e e where we set h Pie ne
t f fit

B T Ba

This bundle has fibres IftElp Efim

If we fix pets then sit ppl ftp.elfipsxe tip ace

pre espsxe e e it fcp

p e e9psxe ee Efa

I Efipl






































































































































2 5 Multilinear Algebra

Fix a V finitedimensional vectorspaces over 1K

Dfn 2.31 The tensor product HOV or U ikV is a K vectorspace generated by symbols
u u for well vev modulo some relations

a u azur u a u u ta cuz V
u niv move m Luxor tuzla Ve

Lemma 232 if en sem is a basis for u and fi ifn is a basis for v these elements eixofi
form abasis for uxov so dimluxov dimculdimer

Warning generalelements are not of the form uxov but rather some linear combination of uxoris

Lemma 2.33 Tensor product is functorial if a U U and B V V are linear I an inducedmap
Uav U V denoted by a B definedby

a B nav aca Bev andextendedlinearly

Lemma 2.34 universal property of Q

A map UxoV W is the same as a bilinear map Uxv W

Example 235 fix U V W Composition defines a bilinearmap

VW x Liu V L uW

linear maps
w

Get an induced linear map L U V LIVw flu w pox to pox

Now take U W 1k Then we get V V IK

This linear map is called contraction othetensor factors come along fortheride

eg A V V B A KGB A B

note tensor with 1dim spacedoes nothing linearity properties

I e Contraction V'Ov ik is induced by Wxv 1k ow Ocu

If er ten is a basis for u and er en is thedual basis then

Eia ejts si or E ai Ei Ej to Fai






































































































































Dfn 2.36 The tensor algebra on V is Tv V0 IK OV vault
This is a 1k algebra with multiplication

varix were varitra
p q pong

eg at v Gue x v3 aus via vz v3

Ie the multiplication is associative unital and noncommutative

The exterior algebra AV is the quotient of TV by the twosided ideal generated by
elements of the form vav

The smallest subspace of TV containing each vav and closed under multiplication on both sides

eg v OveOve v3 o in the quotient This is an associative unital algebra Write Arv
for the image of Voir called the rth exterior power of V This represents signed
r dimensional volumes inside v

We write A for the product on AV induced by Q on TV

eg have i have

Tv I Av

note vav o tu

Lemma 2.37 AV is graded commutative i.e PAQ 1 Qnp for Penrv QE Asr

pf for v we v we have

o ut w acutw var raw war waw raw war
I e raw war

This deals with r s t

The general case follows by associativity

eg I eggs pick up rs minus signs






































































































































Terminology

Den 238 By a multiindex I we mean a tuple in girl of elements in l in in strictly

increasing order

eg I 2,315 I 3 t 8

similarly writeFor a basis er yen of V write e I for ei a heir
EI Ei n heir for dual basis Ei En

Lemma 2.39 Theelements et where I ranges over multi indices of lengthr form a basis
for Arv So dimArv Y

lemma 2 40 There's a natural isomorphism Arv Arv induced by the pairing

Arv x arr i s k

O n nor v a nur i s Ies sancoOoo ui GoerCurl

Note ee becomes dual to EI under this pairing

Yj
d

A V A'W
w n nor t acv a natur

Eg A V is i dimensional dimVen And the induced map n'v NV is the






































































































































2 6 Tensors and Forms

Just as for the dual bundle you can upgrade functional algebraicoperators fromvector spaces to
vector bundles

Example 2 42 Given vector bundle E F B trivialized over ua with transition functions

gpa hpa respectively then E F is the bundle over B with fibre Ep Fp over p and
transition functions

greathpa Uanup GLcrke.IR xGLCrkF IR Gierke trke.IR

Mia

Can similarly define EOF EOr NE

Example 2.43 Given a smooth map F X Y DF is naturally a section of Ttx F TY
for each pex we have

IT X e Ty p Tpx Techy L Tpx Teeny by sheet 2I need to look at this

Dfn 2.44 A tensor field of type pre is a section of

TX 0 ME

An r form is a section of Art X

Note that this coincides withour earlier definition of a l form

Example 2.45 a tensor of type o o is a section of I i.e a smooth function F X IR
also called scalarfield

A tensor of type no is a vectorfield type coin is a t form

In coordinates ni an an r form a looks like I didnt where as are smooth functions

and we sum over multiindices of length r

We canview this as a tensor of type or via

drei a adair I Is sgncol dxionQ aaxioms 1 1

Example 246 on IR a 2 form looks like fax ady for some smooth function f and
we can view this as

f dx dy dy du






































































































































Warning Some authors divideby r in 1 1

Alternative description Arv generated by v n nur

modulo v n a avi t avi n nvr
al v n avi n arr t u via avi n arr

and v n avi a au n arr C l fin n u n avi n rr

Tensor of type pic section of Tx a Ttx E

y smogtinctions
Locally

yin in
j iq 2mi0 02min du a odnjq

And an r form is 9 I dnt I.ci ai gr dni n adair

Eg IR with coordinates ay

Tensors of type coz fit
Egan

t
froggy

t

fridge far dyady

dynax
andy

Jt
2 form g dandy

Tensor of type 0,2 becomes a form fie far dandy

To go from r forms to coir tensors send dandy to dx ady dyad

If F X Y is a diffeomorphism then for any tensor T on X there is a tensor
F T on Y of the same type called the push forward by F

F T Imageof TF y under Deicy F on each Tx factor and Dye on
A the Ttx factors

TeicyX Q TeicyX 09

Similarly we can turn a tensor T on Y into a tensor F'T on X the pullback by F
Can do the same with forms instead of tensors

If F X Y is an arbitrary smoothmap you can no longer push forward and can only pull back
o q tensors or forms So given an r form a on Y Fta is an r form on X






































































































































2 7 Abstract Index Notation

A tensor of type p q is written with p upstairs indices q downstairs indices

Example 2.47 T denotes a vectorfield Ta denotes a t form A tensor of type 2,1
is written either as Taba 79 Tab depending on whether we'rethinking
of it as a section of Tx Tx att XoxTtx Tx or Thx aTX Tx

Tensor product is expressed by concatenating

Example 2.48 Satb is a tensor of type 1,1 given by sat

Contraction is expressed bya repeated index one upstairs and one downstairs

Example 2.49 Sata represents the l form Sa contracted with the vector field T
Sim

SabTab represents contracting thesecond Ttx factor in s with the TX factor in T

The specific choice of labels for the indices doesn't matter but for an equality to make sense

you must have the same uncontracted indices on both sides Reordering indices corresponds to permuting
the factors

eg Gab Gba

Warning This notation is independent of anychoiceofbasis Tab doesnot represent components
However it's easy to turn them into coordinate expressions

E9 write a vector field T as Tiki where T are the components of T wit ki note now
writing ni as nil

Similarly a didnt We implicitly sumover repeated indices oneup onedown The expressions

for Q and contraction in components look exactly like they did in abstract index notation






































































































































DIFFERENTIAL FORMS using summation convention
d If dy
a aidai ai 85dyi

ai daydy's3.1 Exterior derivative
aj dyi

Suppose d is a l formonX In local coordinates a di da Let's try to naively differentiate

Get datadni

In different coords yi we have a ai dy where ai Bfi di Then the naive derivative
in y cords is

g ay gayi 3 la Ey dy dy

3g3g dy ady t 4k dy's dy
dy

g
g

d

dyi 343gdy IIe doexodak t ah 2 n

I

s ax
Ittihad

y
PROBLEM answer depends onwhich local coordinates weuse But the error term is symmetric so we
can kill it by replacing Q with A

Definition 3.1 The exterior derivative of d denoted da is defined in local coordinates by

da YI dxindaiBy the calculation we justdid this is coordinate independent

d m

warning This does not work for vector fields

Definition 3.2 For an r form a de da its exterior derivative da If da ndn

Easy to check this is also coordindependent
T
re form

Lemma 3.3 dis IR linear and on Oforms functions it agrees with thedifferential

Proposition 3.4 d hasthe following properties

1 d O ie dead o

12 for p form a q form B d anp damp 1 andp graded Leibniz rule

3 d 721 5Ida for any smooth map Fix Y a early






































































































































proof 1 Take a didnt locally Then have d'd

d IF dainax
2221
ya

dock a dat nd't o since Ifank IFaxi and n is antisymmetric

An aside If a tform a af then da o so to find a t form that's not the differential

ofa function its enough to find one say a sit dato

eg a nay on IR

12 write a da da p p da

Then d dap did p die nd

II B data data dat t at 3ft an nda nasi

3ft dockadat n p dat t c 1 a dat a fitdickndx

damp t c 1Pandy

3 Suppose fix Y smooth derry

let a dedy

Then d Ftd d F Lady n ndyir

d Kaos f dy n n f dying
dety byanearlierresult in sections

d as of d y of n nd yirot Lemma 2.30 Faf defoF d tf

d as of a digitof n n d y of using Leibniz t d o i and ii

F'd a a dy a netdyir

d a dy a ndy by section2

dd

In fact these three properties uniquelydetermine d among all IR linear maps 2 x r X

that coincide with d on ro x






































































































































An r form a is
closed if da o
exact if I p s t a df

Rem by i above exact forms are closed

3 2 de Rham Cohomology

Fix an n manifold X and write 2 X closed r forms

B x exact r forms

We saw that B X E Z X since d o

Definition 3.5 The rth de Rham cohomology group of X is

Harp X
x

an IR vector space Note HarrX 0 for r dimx By definition Harrx o for rco

Example 3.6 We have Haix Yox

til forms o af I idxi o
functions fix it satisfying af o t linear independence

Iti o ti
I space of functionson connected componentsofx f is locallyconstant
meconnected componentsofx

so dimHai x connected components Haro X IR where c ofconnected components

Example 3.7 we have Har pt 0 unless r o since din pt o

By previous example Hoarpt EIR

For a closed form a write a for itsclass in Harr x the cohomology class of a
We say a and p are cohomologous if a Cp






































































































































Example 3.8 we know

o if r on
Harris IR if no

if rel

We have H 2 131

all i formson 5
differentials

A general I form a ons looks like f o do obviouslyclosed since d fcodo odonde o

whilst a general differential looks like Iolodo where fig are zit periodic functions

Note that for't do o by FTC zit periodic so goat 9107 0 This means that themap
n si IR Flo dots to f o do induces a well defined map

I Har si IR

This map is obviously linear and surjective take fit glo fofladt

If I Soofieldt FCO 7 o

where F is the antiderivative of f
claim I is an isomorphism o o flo

Pf Just need to prove injectivity So suppose I fda o we want to find some g suchthat f 3
Define glo Soofit at This g is zit periodic since I Fao o

Lemma 3.9 contravariant functoriality

If F X Y is a smoothmap then F Arcy rr x induces a map ft Harry Hdrx

If we need to show that if a e z'd then F'd is closed and if a at dp then e aj Fta
ie F'd Fta is exact These follow from F commuting with d

if da o then dfa 7 da O
f dp d Ftp so 7 dp is also exact

Lemma 3.10 wedge product of forms induces a product on HdrX Thisis associative graded

commutative and unital constant function 1

pf Suppose a p are closed Then d ans dans t C1 a'anap o so nap is closed

a drynaptds a apt draft a nds t drads class in Hightle x
anp t d rap t c l d ans t d rads

d s is conomologous to any

represents a cohomology

well defined i.e Ca nep is defined
independent of choice of representative






































































































































Proposition 3.11 If to F X Y are smoothly homotopic thenthey induce the same map HarY HarX

Say to F X Y are homotopic if I a homotopy between them i.e a smoothmap F xxcoin y such that
F o Fo FC ill Fi

Corollary 3.12 If F x Y is a homotopy equivalence F G xox sit Got Iidx and Foa tidy
then F induces an isomorphism on cohomology i.e Ft Har y Hai X is an isomorphism

pf if such a G exists then prop 3.11 says that Gto idx and ftoot idy so Ft is an
isomorphism with inverse at

Example 3.13 Poincare Lemma For all n Hai IR Hari Pt

33 Integration

We want to define few for X an n manifold w a compactly supported n form onX

Weneed two technical ingredients orientations and partitions of unity

Orientations

Eg Sir fax couldmean f I or 55 We need to specify which one wemean Need an orientation onX

Definition 3.14 an orientation of an ndimensional real vectorspace V is a nonzero elementof nav modulo
positive rescalings An ordered basis en en induces an orientation ein men An orientation of a
vector bundle E B is a nowhere zero section of 11 E modulo rescaling by positive smooth functions

We say E is orientable if it admits an orientation equivalent to atope being trivial and it's oriented if
it's equipped with a choice of orientation

An aside ATOPE and nowhere vanishing sections

claim suppose it E B is a rank I line bundle If E admits a nowhere vanishing section then
E is trivial i e E Bxir asvectorbundles

Define a vectorbundle homeomorphism F BxIR E cledatiy smooth

p t t sep
Ip tr v p ul EE

And this is in fact a vectorbundle isomorphism Notice a that Fp p3xR Ep pit m t sep

is a linear isomorphism IR Ep and 12 the square commutes

nowhere vanishings
BXIR E
pr I fit
BY B






































































































































In terms of the exterior power of a vector bundle the top one is constructed as follows Let

gpa uanup Gun IR are the transition functions then A E n rank El

Idea take a rank k v b E with transition functions gpa uanup Gln IR and
we can take the wedge of fibres n'Ep and glue them together via n'gpa on
the overlaps Notice now that n'Ep is one dimand the map n'gpa is given explicitly as

angpa e a nen hit gpa ei
nisi I 9jies using and o

Isnt1 IIgiocisni.ie detgpa e n ne

Example 3.15 any trivialbundle is orientable But OiripnC l is non orientable
line bundle

Rem
line bundle isorientable

Definition 3.16 amanifold X is oriented if it's tangent bundle TX is oriented G admits nowherevanishing
section

Example 3.17 S is orientable th it's the boundary of the ball gives vb iso to BxIR
F bits t scbIRIP is not always orientable sheet 21

Sending a basisforu to itsdualbasis induces a map V V This induces a map Nv n'V
which becomes canonical after quotienting by positive rescalings So orientations of V are equivalent
to orientations of V

Definition 3.18 A nowhere vanishing nform on an nmanifold X is called a volume form An orientation
of X is equivalent to a volume form up topositive rescaling






































































































































Partitions of Unity

These allowus to patch together local constructions

Definition 3.19 Given an open cover Ua of a manifold X a partitionofunity subordinateto thiscover is
a collection of smooth functions Ya X Coil satisfying

Ya supp Ya E Ux
cloture Ya Rt I noon egg d

t PEX I open neighbourhood U ofp such that all butfinitely many ya vanishon U local finiteness

I 40 1 constant function Locally the sumis finite so makes sense

Lemma 3.20 Given any open cover Ua ofX there exists a partition of unity subordinateto it

proof see Lee Theorem 2.231 nonexaminable

compact subsetofx
Fix an oriented nmanifold x and a compactly supported n form won

Definition 3.21 Theintegral of w over x denoted Sxw is definedas follows

Cover x by coordinate patches un such that whoa the local coordinates are all positively oriented
i e ax n naan coincides with the orientationonX remember upto rescaling of positive semagython

Picka partitionof unity pal subordinate to this cover Each Paw has compact support containedin Ua
Write it in coordinates as Paw n dra n and

Define Saw Ea S Pawn n d d
usual integral of aan
compactly supported
function on Irn

Lemma 3.22 This is independent of choices

pf suppose Up isanother cover by coordinate patches with coords up and a partition ofunity
op subordinate to this cover We want to show that

We have fanPaulien ax doin I SantoriS dat doiniiiiii ii iii
or what

firn pallopwliz n dy dy

I fan opw dy dyn






































































































































Remark 3.2

it All the sums involved are finite all but finitely manyterms are zero For all pesupplwl I open
set up containing p on which only finitely many Pa are nonzero The Up cover suppcw which is
compact sowe can pass to a finite subcover Hence only finitely many of the Paware nonzero

ii we used orientedness of X to ensure that all Jacobians arepositive

3 4 Stokes Theorem

The fundamental theorem of calculus says thatfor a smooth function f on carbs we have

fan die fcb flag

Setting X Carb we can writethis as Sx df Sf
boundYofx

Den 3.24 A smooth n manifold with boundary is an ordinary n manifold except that codomains of
charts are now open subsets of IR E IR o x irn A function f on an open subset w of
IR o x IR is smooth if there exists an open set w in an containing w such that f extends
to a smooth function on W

Smooth maps are defined in the obvious way between manifolds with boundary If X is a manifold with
boundary then the boundary ofX denoted 2x is thesetof pex sit for some or equivalently all

charts 6 u u containing p V is an open subset of Rso x Irn and 4 pie o x Irn
The interior of X denoted X is Xlax

Example 3.25 i An ordinary n manifold X is an n manifold with boundary with 2x 0
ii The interval carb is a manifold with boundary 2x aib Xo aib

Hit The closed unit ball Dh ne IR 11 11 El is an n manifold with boundary with
Don open unit ball adn sn t

iv If x is a manifold with boundary and Y is a manifold then xxx is amanifold with boundary
It has boundary 2xXY

Warning if X Y are MWB then xxx need not be a MWB It may have corners at 2 24

prop 3.26 if X is an n MWB then Xo is an ordinary n manifold and ax is an
ordinary In 1 manifold

pf for Xo it's immediate For ax foreach point pe 2x and each chart 4 u V aboutp

define 24 unax
4 o xan nv or so xianDnv

Then 24 is an open nhood of p in 2x and av is open in o Xin I IR
And 4 au an an is a chart on ax about p






































































































































Theorem 3.27 Stokes Theorem

If X is an oriented n MWB and w is a compactly supported n 1 form on X then

tw
2 2x x inclusion

I do

An aside 2x is oriented as follows suppose pe ax and Tpx is oriented by oxen Tpx
let he Tpx be any outward pointing normal vector Then we orient ipax by oax defined by
ox nhoax

i

Example 3.28 on IR ox in oriented by 2x n naan the vector ax is outward pointing
so the induced orientation on 303xient is 2ns a naan

Proof of Stokes

step 1 reduce to a coordinate patch Cover X by coordinate patches Ua and take a partition
of unity pal subordinate to this cover

Then Sx dw Syd IPaw

I Suadlpawl

and fax w Say2 IPaw I Say paw

so its sufficient to prove

Sua d pawl Sau 2 paw

step 2 compute both sides

By step 1 it suffices to prove the Theorem for X IR o IR For a compactly supported

in1 form w on this half space write

w I wi dx a natin naan

Then have it w w dm n nah

g
so Jax aw S w da dan

using the induced orientationon the boundary togive aminus






































































































































Note dw d Ewidata adiin nail

Edwinda n naii n nasi

JEYdasn da n nd i n naan

usingand o I 3ftdoinda n nai
i n ndin

I cpi II ax n admin naan

so that Sydw FS C l EYdoit doin

f 3 doll don t Iac1
i f Itidat doin

Spn f 3,1da do do t I fi f f É d doit diii do

The fundamental Theoremof calculus saysthat

fan Sir É d do doin fog n
widis doin f tw

for the other terms
g I g If dni dnt di d so

3 5 Applications of Stokes Theorem

Corollary 3.29 Integration by parts let x be an oriented n manifold and let a p be a
p it form and an Cnpl form onX at least one of which is compactly supported Then

Sydamp i andp fax aAB

proof By Stokes we have

SydcanB faxanB

By LeibnizMie
g deane S damp t c 1 and

Put these together to get the result






































































































































Proposition 3.30 If X is a compact n manifold then

Sy REX IR

induces a map Har x IR

proof Suppose a B are n forms on X such that a p tar for some h it form O
Then

g gyp t Syd

am

II IIICorollary 3.31 if X is a compact oriented n manifold then H'ar x 0

prepresenting orientationofX
proof Let w be a volume form on X This is automatically closed so it defines a class Ew EH

t
nointi formsT T on an nmanifold

nowhere vanishing if Cw Cos then

Sxw S O






































































































































I FLOWS AND LIE DERIVATIVES i
4.1 Flows

Fix an n manifold x and a vectorfield V on x Given a point pex we can flow along v from p
i e we can try and solve the ODE for some ret reflex so viral eToitX

whichassigns avectorearn
t viral no p tothepoint rit inasmoothway

By standard one theory this equation has a solution defined on some e e for E o sufficiently
small moreover the solution is unique anddepends smoothly on p i c s The solutions 8 are
called integral curves of v

Den 4.1 not standard a flowdomain is an open neighbourhood U of 03xx inside IRXX
such that Kpex the set u n Rx p is connected i.e is an open interval around the origin

Den 4.2 A local flow of v comprises a flow domain U and a smooth map I u x such that
Icop p IRIX
ftQ tip v Ictp f tip EU fix p andyouget the

integral curveof u throughp
It's called a global flow if U IRxx

By ODESdiscussion local flowsalways exist and are unique in the sense that if I u X

E V X are local flows then I It on unv we write It Ect

Proposition 4.3 If I is the local flow of v then I ott Is wherever this makes sense

So in particular É t It wherever this makes sense 00 identitybyden

proof Fix PEX suchthat It p OI P and EsoEthel are defined Let q p

Consider the curves 8 a I a
r.io Iialidlal q

8 a q's p r.co oIotipsotplq

Our assumptions ensure that 2 82 are defined on coil Moreover they satisfy 8,101 9 8210
and f a su 8 al and 8 a su recall So 8 and 82 are both integral curves of
Sv with the same initial conditions Therefore 8 82 Hence

eg Elas.is afoIcasnl1 Isogt p 2,11 2 i gstep
violas.pl s
sucoin

Dfn 4.4 A vector field is called complete if it admits a global flow

Not all vector fields are complete e.g n 2x on IR but compactly supported vector fields are
complete

construct a local flow of on C e e xx then define It ofYo for no o This is
well defined by prop 4.3






































































































































4 2 Lie Derivative

Fix manifold X and vectorfieldv Let it be a local flow of v

Dfn 4 s The lie derivative of a tensor T onX alongV is
wogflowdomain ee xx

LuT at to E T I c ee xx x
atensor oftype ip.at

takes tensorof Pe

pie independentof choice of fin ma

It measures how T changes along the flow It's independent of choice of local flow I

For an arbitrary t we have lookingat t o

1 T pulls tbackto aE Ott T In h often t tensor of cee xxfrom
oneof x

InIno Et E T often http

e

ethogyx

commutativityof

It In n T Iprop31
940EY contravariant EE

Lemma 4.6 for a function f Lvf dfw e calm df er i for o

for a vector field w how Vi fit wiki in local coordinates

proof for a funition f and an arbitrary point pix we can think of d it tie e x as the
curve based at p representing the vector field v at p viel Then we have

Luf at e II f

I foEt

fogygo

f balk offunitions

df vip
It is anintegral curve
representing v

To prove the second part let I be a local flow of w At a point p in our coordinate patch

Then Lowp ate It w p pullback of a vectorfield

at to Dp04 w totalftQ tip v I tip
bydefinitionof
localflowat to DpOtt Eula Quo p

n.mjfj.fimaybepullingdu
tofrontincludes
theDp at to d no 0to4 o P Rem Octmeansanyfunction

atIcu p w Fluitt Ht such that t oas to

W Etpt






































































































































Let P have coordinates ai Then ftip nitwit i
Hen I to 4 o It p I toy ni tri oct

I to ni tri ta wi trift oct total

ni tri tawi tutusof tri tuwifi toft total

Therefore Low It to adult Qto 4 o I Ip

riff wiz

I dont reallygetthis can

Lemma 4.7
i for a t form s and vector field T

Lv Sata LuStaTat sa Lv7 a

lil For any tensors S and T

Lv sat Lrs at Sa Lvt

proof pullback commutes with contraction and tensor product Theresult then follows from the ordinary productrule

Lu sat at to E sat

at teo 9 s E T by functoriality of tensor

E EY's IY'T EY'sof ITT to by product rule

ft to Y's id t tlidltsx th.o194T

Los T t SOLuT

Note how Luv which was not obvious from the definition see it in Lemma 4.6

Definition 4.8 The Lie Bracket of twovector fields is Cv w how hwv This makes the
space of all vector fields on X into a lie algebra a vector space equipped with a bilinear bracket

operation that is alternating Chu o and satisfies the Jacobi identity

n Cy t t Cz easy t Cy 2 x o






































































































































Lemma4.9 The Lie Derivative is diffeomorphism invariant i.e if F X Y is a diffeomorphism then

F Lv 7 Lex e T atensoronY
va vectorfieldany

proof Wehave 7 Lot F Ete It T

at to F It T

I to f Et F 1 7 7

at to F otto7 ft

TFF
pulls forwardontoy appliesat

Cmu FT andthengoesbacktox






































































































































4 3 Homotopy Invariance of de Rham Cohomology

The Lie derivative is related tothe exterior derivative

Definition 4to Given an r form a and a vectorfield v write wa or usa for the tr 1 form

ya da ar
contract in firstentry of r form with vectorfield

Lemma 4.11 Cartan'smagicformula

Lua d wa t 2u da

proof example sheet 3

Recall Proposition 3.11 if to F X y are homotopic then tot Fit on dr

proof Suppose F com xx Y is a homotopy totti let to be the flow of at i.e
translation in Co.tl direction Let it be the map X coil xx nm tin so it Ottoio
and It Fo it

For any r form a on x we have feta Fok So atFifa dt by Ftc

f at to Itoiota de

fo it Iot F'd de

see after an 4s
I at t In often

Elmo 46147 1014 Incom'tIif
tent

Assume a is closed Then by Cartan'smagic formula

Lae F a d 22 7 2 t 22 d a
Egsingeatt d

so Fita Fo'd So it d 22 7 2 at

s

dSo it 22 7 2 at whichis exact

F x told

Rem Lrt at e 94 so af It T It Lrt






































































































































157 SUBMANIFOLDS FOLIATIONS AND FROBENIUS INTEGRABILITY

5 I Immersions Submersions and local diffeomorphisms

Fix manifolds XandY ofdimension m and n and let Fix Y be a smooth map

Definition 5.1 F is an immersion submersion local diffeomorphism atp if De is injective surjective
an isomorphism at P The points p at which F is a submersion are called regular points of F
and all other p are called criticalpoints A point get is a regular value if F y contains

only regular points otherwise its a criticalvalue

The name local diffeomorphism is justified by the following

Lemma 5.2 If Dpt is an isomorphism then I open neighbourhoods U of p V of 7 p such that
Flu U V is a diffeomorphism

Proof pick charts 4 about P Y about F p Then g Yo top is a map an am with
invertible derivative at ICP By inverse function theorem there exist open neighbourhoods U
of Pcp V of YoFlp such that g is a diffeomorphism U v But this saysprecisely

that g is a diffeomorphism g U v where U 4 u Vp v

Example 5 3 consider the map 0,0 x IR IR no ti reoso rsino This is a local diffeo
So if we restrict the domain to o o x Oo dot it then it givesa diffeo
o o x Oo oo zit IR IR o cosooisinoo a theraywheremapisnot injective

So rio give local coordinates on IR IR o cos00 sinoo without inverting any trig functions

Note if fix y is a local diffeo atpex and yes yn are local coords about e p then

y of ynot are local coords aboutp In these coordinates F is the identity Similarly if

ni an are local coordinates aboutp then n of la unoF'la give local coords about
7 p in which Fis the identity

Proposition 5.4 suppose F X Y is an immersion at p and ni inn are coords aboutp Then there
exist coordinates y ya about Fcp such that got ni innso so
in these coordinates F looks like Irn IRnoo u antoirmn nm

Similarly if F is a submersion at p and ye ymare coordinates about Fcp then I coords
uh inn about p in which F is a projection onto the first m components

proof Half of proof is on example sheet 3 andother half is similar






































































































































Proof of local immersion thm let 7 x Mbe an immersion at x e X Then I local
coordinates about n and y fan so that I loons like projection onto the first n
coordinates

let 0 U x and 4 V Y be charts around x and y respectively and byshrinking
U and V if necessary let g be the map from the commutative diagram

ayyy
x I Y

Then I an immersion at p precisely says that dgo IR t IR it injective By a change of basis
assume ago is a math of the th

I

Augment g to obtain a function G U xRmn t IRM Glu t ti girl z Then dao is
of the Fm

In1min Im

invertible local diffeomorphism now 4 and a are both local diffeo at o so 406
is also a total alto at o shirining moods you u Y is a local parametrization of Y
near Y

if h is the canonital immersion then g a oh

yo a oh wog fog

so that f it totally equiv to canonical immersion






































































































































52 Submanifolds

Fix an nmanifold X

Definition 5.5 A codimension K submanifold of X is a subset 2CX such that YpEZ there

exist local coordinates ni an aboutp in which Z is given by ni nk o

Warning This holds t pet not theX

Eg Z 1122190 x 0 C X IR is a submanifold but near the origin its not definedby the
vanishing of coordinates 0.0.0 Ez

Note Z inherits a topology fromX which is automatically Hausdorff and secondcountable

about each pez we havenice coordinates ni inn onX Then nai an give local
coords on Z

The transition functions forthese coords on t are smooth

Equivalent atlases on X give equivalent atlases on Z upshot

Proposition 5.6 If 2 ex is a codimension K submanifold then its naturally a smooth n k manifold

Moreover the inclusion map 2 Z X is a smooth immersion that's also a homeomorphismontoits
image And composition with 2 induces a bijection

smooth maps Y Z I smoothmaps Y x with image CZ

Definition 5.7 A smooth immersion that is a homeomorphism onto its image is an embedding

Lemma 5.8 if F Y x is an embedding with image Z then Z is a submanifold of X and
F induces a diffeomorphism Y Z

Example 5.9 The inclusion she int is an embedding Hence S is a submanifold of IR
and the smooth structure we defined on it coincides with the submanifold smooth structure

Finding nice coordinates is hard but there's a much easier way to check a subset ofX is a subman

Proposition 5.10 If F X Y is smooth and gey is a regularvalue then F q is a submanifoldofX
of codim dimy dimy dimx then F a isempty

proof Take pet a and pick local coords y gmabout q with yea O Since q is a regular
value F is a submersion at p so I local coords ni an about p in which F is projection

IR IRM IR m am

so locally near p F a is given by a nm o






































































































































Example 5.11 consider F IR IR n n 110111 Then DF 25 id so Dpt is surjective fp to
Hence trek 03 the set F r is a codimension I submanifold of Mnt

E g F i s is a submanifold

Most points qe Y are regular values

Theorem 5.12 sard's Theorem for any smooth map F X Y the set of critical values has
measure zero in Y More precisely if 6 u v is a chart on Y then 4 critical values in all CV
has measure zero with respect to Lebesgue measure on 113dm

proof Theorem 6.10 in Lee 2ndedition or 2.1.18 in Nicolaescu september 2018 version

We'll only use the following weaker version

Corollary 5.13 regular values are dense in Y In particular regular values exist

Warning Sards Theorem says nothing about regularpoints

Eg if dimx dimY then there are no regular points Soregular values Y FIX

Definition 5.14 Submanifolds YZ Cx are transverse if ApeYaz we have Tpt Tpt Tpx
We write YAZ

Proposition 5.15 If YAZ of codimension k and e then Yaz is a subman of codimension Ktl

proof Fix peYnZ There exist coords y yn and ti tn about p such that y y yr o

Z ti te o consider the map F u IRkte givenby y yea zit te By transversality
Tpx by Tpt is surjective So F is a submersion at p Hence I coords ni nn

about p s t ni bi nk yes nice ti ante Ze so near p Yat is givenby the vanishing
of ni nkte So Yaz is a submanifoldof codimension late

Idea have a map t u IR te pts talpl gulp a Ipl tele

Tpx
TP try Tpt surjective so I is a submersion






































































































































53 Frobenius Integrability

Fix an n manifold X

Suppose we have D e a rank k subbundle of TX We call D a distribution often we canspecify
for each pen a linear subspace DpE Tpm and take YDe D By the local framecriterion for subbundies
D is a smooth dist iff t p em I a neighbourhood Uotp onwhich a smoothvector fields Xy xk U TM
s t Xilp kelpform a basis for Daat each a EU we say that D is locally spanned by the
vectorfields Xi xk

Suppose DETX is a smooth distr A nonempty immersed submanifold Y ex is called an integral manifold of
D if Tpy Dp feet The motivation for this chapter is investigating t of integral manifolds when given
a distribution

Definition 5.16 A kplane distribution D on X is a rank k subbundle of TX
linearspan

Example 5.17 In 1123 can ay is a 2 plane distribution or can tydt dy These can be
described as kerdz kerldz yd respectively

In general a k plane distribution is given by the vanishing of n k fibrewise linearly independent 1 forms

Examples 19.1 Distributions andintegral manifolds

191 if V is a nowhere vanishing smooth vector field on a manifoldM then v spans a smooth rank t distron M

dwhich is vivitol byarnotintegralcurve
mmmm

Ib In IR the vector fields In span a smooth distr f rank k Thek dimensional affine

I y

Tax

a let R be the distr on IR1505 spanned by the unit radial vector field niFi and let Rt beits orthogonal
complement bundle Then Rt is a smooth rank ni distr on IR 1505 Through each point see in1903 the
sphere of radius toil around o is an integral manifold of Rt

q
niani

vectors perpendicularto
miami whichpointsradiallyoutwards

w

Given a k plane distribution D and an immersed curve 8 on X derivative of 8 to you can ask
that J lies in D everywhere This is a system of n k ope's if D is locally kerlaimankl then






































































































































These are invariant under reparametrization of 8

If K l then there's a unique local solution curve modulo parametrization through each point We
can thenpick a small n 1 dimensional disk in X transverse to D Thenget
local coordinates on X n y yn sit n is a coordinate along

the solution canes and y y are coordinates onthe disc

Then the y give conserved quantities locally along solution curves and
conversely solution curves are any curves contained locally in levelsets

of the yi

If k I then the system of ODE's is underdetermined The nicest possible situation is that there exist n k
locally conserved quantities along solution curves and a curve solves the system of opes if it lies locally
in level sets of these quantities

Den 5.18 such a system ofopes is called integrable

We formalise the notion of local level sets as follows

Dfn5.19 A smooth atlas on x is k foliated if transition functions have theform locally

ne irk yearn i g y
yÉy

ie Yi o ti
Efendi'inanmaps

mkxepts sirkxepi.is

This respects the decomposition of IR into slices IRKx Pt A k foliation on X is an equivalence class
of a foliated atlas under theobvious notion of equivalence equivalent if their union is k foliated

Example 5.20
i if X Yxz then X is dimly foliated byslices Yx Pt takeproductcharts similarly itis dimz
foliated with slices Pt XZ

ii if F x x is a submersion then x is foliated by fibres me x

y
t

iii consider the map IR T s xs ny ein inty
with aEIR This induces local coordinates on t andthese
induce a foliation

ax slopea
n

ay direction

Can fibrate T by purpleslices If 2 is irrational then eachslice leaf is dense in t






































































































Given a k foliation of X there's an induced kplane distribution D Can 2n where ni are
coordinates on the foliatedatlas These arethe tangent spaces to the slices

Conversely given a kplane distribution D it arises from a k foliation in this way the ODE

system is integrable The foliation coordinates y ynk correspond to the local conserved quantities

Theorem 5.21 Frobenius Integrability A kplanedistribution arises from a foliation inthisway iff D is
closed under the lie Bracket I e if u wed are vectorfields on X then cv.wsED

Den5.22 such a distribution is called integrable

Example 5.23 Recall our 2plane dist'son 1123

it can ay arises from the 2 foliation induced bystandard charton v cancheckthat its closed under C it

ii 2x 927,2g Not closed under lie bracket dy an 9271 224D
suppose f is a conserved quantity f IR IR for the one system i e constantin direction an14ozanday

constantalongancurve tangent
Then In y Ey o tomercaz yard

so flag z flo y 2 ny
f o o t ny t independent of y
constant

Proof of Frobenius

Both Conditions are local so it suffices to work in a small neighbourhood of an arbitrary point pex

Suppose D arises from a foliation Then locally we have coordinates n's ink y ynk such that
D Can's sank Then from our formula for C D is easily seen tobe closed

Conversely suppose D is closed under E i Pick arbitrary local coords s sk t t

about P By reordering and shrinking the domain wecan assume that the 2xi are transverse to D

so for it ik I unique smooth ai suchthat

u Ssi t Faidei lies inD

Idea for a vector space v two subspaces u wer are said to be transversal if ut we v i.e

every vector in v may be written as a possibly nonunique linear combination ofvectors in
U andW

If NMCX are submanifolds satisfying t pennM

Ton Tpm Tpx
then N and M are said to betransverse submanifolds

If you have an and D then aviandD are saidto be transverse it at every point they aretransversal



Because D is a I plane distribution wlog we can take the last n k cooras t th to be
transverse to D

Now any Isi can therefore be written as something in D t something in Cati I.e

Vi 2s t 5aijat

lies in D for some smooth coefficients aij For some reason these are unique perhaps to do

with the fact that 2s ask 2 1 denk locally span TX Actually I alsothink that
its dimension reasons thisis horrendous notation but

dim Tx dim D t din Cat's athks dim on coat ath

n I n't
dim Dnc at an ios o

so really this is kindof like a direct sum and therefore the decomposition is unique

what Jaiksaid was whoa Catt Zenk is transverse to D can ensure this holds

at p itself andhence on our whole coord patch after shrinking if necessary

D is a k plane foliation and the vi's are fibrewise tin indep since the asiare so actually
D vis via Hence to prove that D arises from a kfoliationof X it sufficesto construct

coordinates x's ak y ynk such that ani ri

WLOG pro in sit coordinates our whole long argument just showed that for each i there exist
unique smooth functions ai such that v 2 i t É ai at's lies in D

Let Ii be a local flow of vi Define F U x where u is a small neighbourhood of 0 in IR by

5 n's ink y signY Eto ti
saggy flog

for time u in ri direction ti

s sk ti tnK

We have Dot Jai vilp Dof ai Dei P so it takes one basis to another an isomorphism

atp o so Dot is invertible By inverse function thm F defines a parametrization near p

g

so now we've defined our coordinates andwhat's leftis to show that 2 i Vi

Oni at to9 o oftp.nitto o di oy

I to 01 od o o fi o d o.gl

Vi d o oÉ o o_0 Cory ED



so its sufficient to prove that I commute By example sheet 3 this reduces to checking that
vi v o fi j

We have vi v EI Yi ate t Ieaim351ate aje em2am

as 2si Éajeate

We're assuming that Cuiv ED but we see that it's a linear combination of dei's which are
transverse to D Hence CuiVi must be zero

Theorem 5.24 Frobenius Integrability Alternate version

A distribution D arises from a foliation iff the annihilator of D

ICD de st X a Vi our o whenever all vied

is closed under d

Eg D Can ay has ICD r IR adz so if a e ICD then a Bada forsome p Thus

da dpndz E ICD so D arises from a foliation

D Contydz dy has ICD n m3 a dz yd whichis notclosed under d e.g d da yo E ICD

If it were then d dz you n at you o cwe'd be able to write d dz you an de yd
for some a since d de yard e ICD But

d dz you aide you
dyadic a de yax
dyadx naz
dandyadz to

so D does not arise from a foliation



Proof of Alternate version

Both conditions are local so we can work locally near p Then I vector fields vi ve near p
such that D vis via Similarly there exist n k I forms on san k such that
D Kera n n kerank

Then ICD n x na t tr x n an k

ILD is closed under diff ti da e ICD This holds iff da vi via o f j k

Claim For any l form a and vector fields S T

da sit is delta it d Zsa les a

Applying this to dailve um we get

da ve um ivediarmait humdlai Zeveum ai
offpD tosinge D

o o 2eveum di

Loveum di

Hence ICD is closed under D Lhs o ti l m

Rus o ti l'm
Eve um eKer ai ti

Cueum ED

D arisesfrom a foliation byfirstversionof Frobenius

So we just need to prove the claim We have

2s data g Ig
isjustafunction

resit t 2 Lsd byLeibniz

And Lsa is da t d zsa by Cartan's magic formula Putting everything together

is d aid resits at Iggy
Ltd asa

da sat 2 d 2yd 2yd zsa Les ya

as required This completes the proof

See paper notes for indepth calculation



I LIE GROUPS AND LIE ALGEBRAS

6.1 Lie Groups

Dfn 6.1 A lie Group is a manifold a equipped with a group structure such that multiplication

m Gx a G and inversion i G a are smooth

Example 6.2 GlenR

Dfn 6.3 an embedded lie subgroup of a lie group G is a subgroup H thats also a submanifold
The restrictions of group operations from G to H are smooth so H inherits a lie group structure

Example 6.4 StenR Oln SoCal are embedded lie subgroups of GlenRl Glena Unt Suen
are embedded lie subgroups of allzn.IR

Dfn 6.5 Given a lie groupG and gear we have maps a G

Lg h gh

gch gag

left translation

RgCh hg right translation byg
conjugation

These are diffeomorphisms the inverses are lgi Rg1 Cg

Den 6.6 A tensor T onG is left invariant if LgT T V9EG Similarly for right invariant and
conjugation invariant T is called bi invariant if its left invariant and right invariant

bi invariant conjugation invariant

Lemma6.7 for any hea The map

left invariant tensors f
tensorsat hof
type pig

ona oftype pic

given by evaluation at h is a bijection similarly for right invariant

pf if T is left invariant then V9EG we have

Tg ight Tn Lng1 Tn t need to goover

So the map t Th is injective Conversely given that h the formula t defines a left invariant
extensionof Th toG

Corollary 6.8 Any Lie group G is parallelisable has trivial tangent bundle

pf pick abasis for Tea The left invariant vectorfields associated to thisbasis form a fibrewise basisfor
TG trivialising it



Example 6.9 for even no z s does not admit a lie group structure ish is nontrivial on the
other hand 53 is parallelisable as s is diffeomorphic to su 2

sua yay lui'ttu2 1 53C e

6.2 Lie Algebras

Fix a lie groupG

Den6.10 the lie Algebra of G denoted 9 is Tea

Example 6.11 for G GlenIRI we have g geln.IR Matnxn R

Recall a lie Algebra is avectorspace equipped withan alternating bilinearbracket whichsatisfies the Jacobi identity

Proposition 6.12 g carries a natural bracket operation making it intoa lie Algebra

proof To each element 5 E g there is an associated left invariant vector field lg
We claim that the lie bracket of two left invariant vector fields is left invariant
so we can define 5,4 by

losing esen

This inherits the lie Algebra properties from the lie bracket of vector fields

It remains to prove the claim Well for all 5 n and gear we have

Ils en Lgtlg Latent bydiffeomorphism invariance of C
Ils en since es en are left invariant

So Ils en is left invariant

Proposition 6.13 For all e g the vector field is complete

proof Consider one 8 1518 with riot e

This hasa solution on C e e for some small e o This curve satisfies

8 Stt 81s Rt for small sit

Both sides satisfy dat Is and start at rest Hence they're equal by uniqueness ofsolutions

Now extend 8 toIR by defining 8 t 8 TN for N o Now define the global flow I of
Is by

tcg grit



We'll write As for the flowof es

Den 614 The exponentialmap exp J G is defined by exp3 I'gle

Lemma 6.15 we could have used right invariant vector fields instead and we'dget thesameexp

proof let 8s bethe integral curve of e starting at e so exp s 8g i It sufficestoshow that

s is an integral curve of the

ish

field s This holds since t wehave

8gt fsls.org stt
adsIs.org stt

rs Irsay

t

Birgit Insist so adslseorglslvs.lt
Il Valsvs't

I translatingbyright'sRvA It lgldgls.esls o
RrgItll lglEfoiel
Rr Itll egle
Rush race

este s race

retract

Lemma 6.16 exp is smooth

pf consider the vector field v on 9 9 givenby v15 g o lg911 This hasa smooth local
flow of which preserves the slices 53 9 on this slice it's theflow of lg so

exp s pre of se
which is smooth

Example 6.17 For A e ge nih define eat by It At E A't s Ast
This converges absolutely uniformly on compact sets Consider ret eta This satisfies

jct At ta A t

Aeta etna

Hence 8 isthe integral curve Ja
Thus expA rel sea

ret Laret

Warning At o e g the derivative Doexp g g is idg so exp is a local diffeomorphism
near o But exp need not be globally injective or surjective Eg for sccz.IR its neither

lemma 6.18 For 3 y e g we have 3,4 at to expats n

proof We have in attofu un EstoIn oEstle

attodduluoexpltslexpcunlexpl.es

It to Cexples 1

Corollary 6.19 for A Be gecn.pl CAB AB BA

Proof By previous lemma AB etaBe ta o



Corollary 6.20 If 5 ME 9 satisfy CS n O then exp sty exp3 expn
So in particular exp s and expn commute

Lexplts Rexplin
proof Define Rt exp ts exp tn

We have Xlt explts exp th t expltsexplain

explts expitn s th cexpc.tn 5 expl tn sexpttn

Where 5 cexpc.tn

expltsexplant expltsexplantexpl.tngexplen

We claim 5 5 Vt so 8 t lgen r t Then 8 solves the ODE defining exp t sty
and satisfies 810 e sowe're done

At t o we have 3 3 But also

at5 In h o exp tenth 3

Cexpc tn 4 5

0 by our assumption that 3 n o

Warning For general 5,4 its not true that exples th exp5 expn

63 Lie Group Actions

Fix a lie group a and a manifoldX

Definition 6.21 An action o axx x of a on x is smooth if the map o is smooth

Examples 6.22
i Action of G or embedded subgroups ofG on G by leftright translation or conjugation

ii Glen R acting on IR or RIP
iii och for subgroups of Ocn acting on Sn

Definition 6.23 A smooth action of a on a vector space V by linear maps is a smooth representation ofG
This is the same thing as a lie group homomorphism p G Glu

Example 6.24 The adjoint representation isthe action of G on g byconjugation

Adg15 Cg

The dual representation is the coadjoint

All actions and representations are smooth from nowon



Definition 6.25 The infinitesimal action of Seg onx ex is

5 u Demo 3,0 explts a o E Tax

Example 6.26 The infinitesimal adjoint action of 5 on n is Adexpats 4 o 55147

6 4 Quotients and Homogeneous spaces

If a lie groupG actson a manifold X then we have a quotient space G and a
continuous projection X G Sometimes this quotient isnice eg IR190 art RIP
but sometimes its horrible

e g IRYGccn.ir two pointswith a non hausdorff topology

Theorem 6.27 Lee Theorem21.10
If the G action is free and proper then YG is a topological manifold of dimension dink dimG
and it has a unique smooth structure that makes IT X 16 a submersion

Definition 6.28 The action is proper if the map axx xxx gin is x ga is proper
preimages of compact sets is compact This is equivalent Lee prop21.5 to thefollowing

if gi and ai are sequences in GandX such that Cail and gini converge then
gi hasa convergent subsequence

Definition 6.29 A homogeneous space for G is a manifold x carrying a transitive G action
A principal homogeneous space is a manifold witha transitive free action sometimes alsocalled
a G torsor

If X is a G torsor then for any nex the orbitmap a x gaga is a diffeomorphism So
X looks like a copy of G but with no distinguished identity element

Examples 6.30 i s is a homogeneous space for soon In fact its son1
ii If His an embedded lie subgroup of G then the right left translation action of Hon G is
proper and is obviously free So a it is naturally a smooth manifold The left translation
action of G descends to a it making a it into a homogeneous space In fact every homogeneous

space arises in this way

iii The space Fort of ordered bases in v carries a leftaction of Glen making Flu intoa alert torsor
There is also a right action of allheal where ne dimrt givenby
if er en is a basis for v and A e Glen Irl then er en A fit fn defines a new
basis fi tn

This action isalsofreeand transitive SoFoul is a Glen.ir torsor acting on the right

Recall action of a on x is free if f nex if ga hee then g h



I PRINCIPAL BUNDLES AND CONNECTIONS

71 Connections byHand

Fix a vector bundle it E B covered by trivialisations da intheusualway E has rankk
Given a section s under Ioa it becomes an IR valued function Va The naive derivative is dux an
Rk valued 1 form Under a different trivialisation Ip va becomesVp gpava Let's take the naive
derivative of this and then passtheresult back to the da trivialisation

gpa dup gpa d grava
gpa gpadrat gpa d gpava
an

so the result is trivialisation dependent via theactionof the geck.IR valued I form on Va

Elaborate let s B E be a section which locally we can think about as s Ua Flux
We have a trivialisation Ia ha Uaxirk Then

I os ua ha x irk
P

s
seep g

t where ugepk

We can then define a function Va B IR Vap V5 which is obviously dependent on choiceofs

Notice that for a different trivialisation peup if Ipos p p.us then since
poof p p gpapls

p V Ipospl IpoQalogosp dipody p Vad p gpaplus
use gpaplug up gpaVa

In some sense this is a canonical way toturn a section into something we cantake the derivative

of The naive way to dothis would be to just take dux we know Va M IR and
we know how totake d of functions likethis

For this derivative to be trivialisation independent we really want that dup and dux are
related by the transition functions dup 9padua But the above says that this is
not always the case Sotaking the derivative like this is notwell defined



one is a geekIR valued 1 form Aa on each

trivialisation patch UaCB suchthat on overlaps

Aa gpidgpa t gpiApgpa

The covariant derivative of a section s with respect to it is the E valued i form dts defined

Consider the local trivialisation Ia It Ua 1 E Uaxirk really every SEE canbethoughtofas a vector
at a point so how is dts an Evaluedoneform It's defined underda asdux Aava which
pulls backto give a oneform Ia dratAgua linkvalued I form to an e valued I form

Let's analyse dux t Adua Now Vais an Inkvalued function i.e Va B irk so duo is
an irk valued 1 form coefficients are in IR or rather maps B irk What we really need to convince

ourselves of however is that Aava is an IR valued 1 form

Now Aa is a gl kik valued I form andso locally it has coefficients given bymaps B aecia.IR

so matrices dependent smoothly on pets

Say Aa E Mida Then Aava I Milvadrei where wemean at pets 2 MilpVale dx
Hence Aava is an inkvalued I form

so this all makessense prettymuch The conditionabove requires that Aa behaves nicely agrees

onoverlaps But ofcourse thisagreement is under the gluingmaps Passing to the trivialisation thissays
that dup Apop gpa duo naval The next part saysthat this condition is exactly what weneed

This is consistent on overlaps

g dup Asus gpa d 9rovalt951
aeYhdlvaltgpa l dgpa vatgp a ApGpaVa

We say s is horizontal covariantly constant if dts o

Example7.2 suppose E splits as F F forsome rank e subbundle F we cancover Eby trivialisations do
in which the splitting becomes theordinary splitting inBk Rk Ret inte

Given a connection A on E we can define a connectionon F bytaking the top left exe submatrix
of each Aa restrictingthe 1 forms

The covariantderivative of a section s of F is givenby taking dasin E and projecting onto F along F
In particular if i X it is an embedding then E TIR has a canonicaltrivialisation Ia and
hence a canonical connection with Ao o

The splitting E TX Txt then induces a connectionon TX



Definition 7.3 The frame bundle f E of E is the space of ordered bases in each fibre I e

FE Y Un XFlirty where bella vi via beup gpab vi gpablue

This has a projection ITF FCE B It carries a right Gick R action making everyfibre It b

into a principal homogeneous space A section of F E overu is a map f U Feel such that
It of ida

The frame bundle has a natural right action ofGL kin which isgivenby an ordered changeof basis which
is free and transitive since it acts onthe right it doesn't interfere withthe gluingmap

vi ivia gpaplus gpaplur
and um Vam spavin graceviaM for a changeofbasismatrix M

Note sections of fee over u correspond to trivialisations ofE over a

A section of F e is an assignment of bases in each fibre in some smooth way that agrees on the
overlaps so really locally this is a way of writing downmaps IRK on each chartu

So over h foreach see we can write the point as some vector in terms of our chosen basis
which gives a useirk Hence we can identify locally every se E user in a smoothway

We get for each a a diffeomorphism Eat Ie Ua uaxacck.IR Fa b g big

i

iiigeacck.IR is invertible actingon theright diffeomorphism iswelldefined

Take a connection it on E For each a we can build a geekRI valued 1 form on uaxalck.IR
as follows

v e Tua g etgacck.IR Adg Aau 3

Pulling back by datgives a geek.ir rained form i up

Let's thinkabout howwedefine 1 forms Ifwewant it to be defined on MaxGillis.IR we want amap
that takes vectorfields to maps us geck.IR essentially coefficients of a form are maps un sicker

Equivalently we can define how the 1 form whenevaluated at a point acts on tangent vectors

at thatpoint underthe assumption that its dependence is smooth

Let gsetgalcis.ir For geallisir g is a matrix and we canidentify alck.IR IR to see that

gs e TgGickirt is a matrixtoo notice that we don't have to write g 5 wecouldjust write 5
but forour purposes we're makinguse of it

v g5 AdgiAalultsgives us something in geckir



Prop 7.4 These local constructions agreeonoverlaps and define a geek.IR valued I form A on fee satisfying

Ap p 5 A pet E SE yl Kiirpapointbasis matrix

RtgA Adg it for all g eGLck.IR

Conversely any geekR valued 1 form A on FCE satisfying these two conditions defines a connection on E
according to Den 7.1 via Aa FIA

Definition 7.5 A connection on E is a ge kir valued I form on fee satisfying these two conditions

7 2 Principal Bundles

Fix a lie group G

Definition 7.6 A principal G bundle over a manifold B is a manifold P equippedwith

A smooth surjection IT P B
it u

a sugarA collection of open sets Ua covering B and foreach a a diffeomorphism
r

er
I I Ua UaXG I

suchthat 1 pr o Ix It restricted to it ual
2 Epocta big b gpabig forsome smooth maps gpa Uanup G

P istotal space B is base Ia are trivialisations gpa are transition functions etc
Lotsof concepts carry over from vector bundles eg pullbacks sections construction by gluing

Each trivialisation Ia gives a section b Ia bae over Ua conversely a section s over U
defines a trivialisation over a via I big scblg

Here we're using right G action on P

A trivialisation Ia It ha I ha xG if s is a section B P then for big e ha xG we

can get an element of it Ua by letting sact on b scbep andthen having geoacton it
We need to think a little about why this is a diffeomorphism First is this even well defined
well yeah A section s is such that Tosib b andso for some scb e P youcan always
recover the original point b bycomposing with it Now letting g act on scb by example 6so iii

this action is free and transitive I think which means that scblg.scb n g h so that we can
recover g by this uniqueness of course all of this is smooth so I is a diffeomorphism need tochecktrivialisation

conditions

If P B is a principal G bundle then P hasa right action defined in trivialisations

ie if Iacp big then pin b gh This gives a correspondence between sections of P
and trivialisations

I s definedby scb I big

s OI defined by I big s b g



Example 7.7 Ii if E is a rank k vector bundle over B then Fce is a principal gccis.IR bundle

action corresponds to change inbasis
ii Bxa B is thetrivial G bundle
iii A Gbundle over apoint is just a G torsor

Warning A rankKvector bundle is notthe sameas a principal irk bundle

For a vector bundle the trivialisations are glued along intersections via isomorphisms of vector

spaces elementsof Gick.ir But for a principal IR bundle the gluing is done by elements
of IRK translations

Remember transition functions of a vector bundle gpa uanup GLCK.IR

transition functions of a irk bundle gpa uanup g me
not the same

The right G action on a G bundle P is free andproper and plotit P 9 E

Conversely if P is a manifold carrying afree and proper right Gaction then the quotientmap
IT P PIG gives a principal G bundle it is a submersion so has local sections and they
induce trivialisations via the right G action

Example 7.8 Recall the Hopfmap H Sant dip The sphere s cent carriesa free
UCD action which is alsoproper since Ucl is compact The action is by scalar multiplication and
the quotient map is H Hence H is a principal Ucl bundle

Definition 7.9 If P G is a G bundle and pG Guv is a representation ofG then the associated

vector bundle is

pear pxvygpg.mn ppeg gives a vb over B

If P is trivialised over Ua with transition functions gpa then Pxav is trivialised over the same
Ua with transition functions p gpa

Note that gpa uanup G so pogpa Uanup alert andthis is enough todefine a vector bundle

Example 7to

it if P FCE and p Gcck.IR Gick.IR is the identity then the associated v b is E itself

Then G GLCKIIR whichactsas a changeofbasis on theright we can think of apoint in e E as
b uh gun then pg b u'g ung For a vector weir then we get the identification
bu'g ungw b vi i uh gw which encodes theexact samedata as E

ii if P F E and p is the dual representation transpose inverse then the associated vb is E
Similarly we can get tensor powers of E E

iii if p G Greg is the adjoint representation ptg 5 959 then theassociated v b is
called the adjoint bundle adP
If P FCE then ad p EndE EvaE



7 3 Connections

Let It P B be a G bundle

Definition 7.11 A connection on P is a g valued i form it on P satisfying

Ap p 5 3 Rgt A Adg A
Fp GRg

p

If Ea is a trivialisation of p corresponding to a section so then

Aa sat it

is called the local connection 1 form

It is a t form onP and so B p so that sated is a l form on B

NB Recall that p 5 for pep andSeg means the infinitesimal action of Eegon Patp den6.25
This is themost natural way toget a tangent vector ETppfrom one 3ETeG g

Lemma 7.12 on overlaps Aa gpa'dgpa t AdgpaAp

letpeUanup Then A

Proposition 713 Everyprincipal bundle and hence every vector bundle by considering framebundles
admits a connection

proof We can cover P by trivialisations Ia over ha and definea connection Aa on It Ua
by taking Ax O

P
Aa Basically buildupA

using local connections
thatsatisfy overlap
conditions

I BUa
let Pa be a partition of unity sub to this cover Then it PaokAa defines a connection onP

For p e P 3 E9 wehave p51 I ftp.t Ipaotp 3

For gEG we have RgA I Pao'tRota
I poor Adg ta
Adgi PaokAa

Adg A



Proposition 7.14 The space of all connections onP is a torsor for the space of adp valued 1 forms onB
Homogeneousprincipalspace spacewitha transitive a action

pf Fix a reference connection it on P Now let it be any other connection Consider the g valued
1 forms Aa Ado on Ua CB on overlaps we have

Aa Aa Adgpa Ap Apo

so they glue together to give an adp valued 1 form conversely if D is an adp valued I form

then the g valued I forms An'tDa define a connection it These two constructions are inverse

Definition 715 For pep the vertical subspace at p is y't Ker Dp't TPrep p g
A horizontal subspace is any complementary subspace

A horizontal distribution is a distribution H onP which is a horizontal subspace at everypoint

Given a connection it onP H Kera is a horizontal distribution

ranknullity dim kerf dimPl dimly dimp dimTrp
Also Kerantrp o since if p 3 is in kerf then

A p51 0 but A p 5 3

Because it is right equivariant His rightinvariant ie Rg H H
Conversely given a right invariant horizontal distribution H I a unique connection it with Kerch H

Any vector can be decomposed uniquely as p th Then define Alu 5 Asection s of P is
horizontal iffit's tangent tothe horizontal distribution i.e sta o

Example 7.16
i consider the projection IT IR IR mint ay as a trivial principle IR bundle The distributions

2x ay and can y2z 2 are horizontal don't contain 2z and are IR invariant invariant

under translation in t direction Sothey each define a connection on thebundle

case 1 A hercandy de A o
a yd'tcase 2 A Kerl2x yaz2g dz yax

ii Recallthe Hopf bundle H Sant dip

Int

View Tps as a subspace of ant consider Tps ni Tps This defines a Ucl invariant
horizontal distribution hence a connection

Recall a section of E is horizontal iff covariantly constant can check that a connection on E induces

a horizontal distribution on E s t a section is horizontal inthe old sense covariantly constant iff

its tangent to this distribution Recall alsothat a section of fee is a ktuple of sections sis ask
of E Then f is horizontal iff the si are horizontal



Usingthe horizontal distribution we candefine parallel transport on P B or E B as on Example sheet397

7 4 Curvature

Fix a principal G bundle P B with a connection A

Definition7.17 A is flat iff the horizontal distribution is integrable arisesfroma foliation

Proposition 718 the following are equivalent

i it is flat
i P is foliated by local horizontal sections
iii P hasa horizontal section locally overeachpoint in B

an ye p

B
proof it Gil b

ii just spells out what it means forthe horizontal distribution to arise from a foliation

ii iii is obvious

iii ii Givenpep byGil I horizontal sections over U tip Then the righttranslates of s
foliate P over U

in a in Given a trivialisation Ex the corresponding section sa is horizontal iff Sa'd 0

Aa

dts O a sated 0Curvature is the obstruction to flatness
curlyf

Definition The curvature f of it is the gvalued 2 form dug t Aaux

at I cant a dud O

Notation For g valued pig forms 0 45 Oi T 7 Gti we write cont for

cont Ig SiMi anti

warning Cont 1 1 Tno equiv Cont xi tn Espeal1 f oftons Xocp n xocp.nl Xoeptal

if A is a g valued I form then

Ant XiX2 CAXi Ax2 AX2 AXi
2Calx A x2



Theorem 7.20 A is flat a f o

proof we claim flu w o if whoa v is vertical Then by Frobenius it is flat iff
dit e ICKera a dot vwi o f horizontal v w

Idea let y v tve be some tangentvettori or vector field if you like with u verticaland
be horizontal we want to show that the curvature map f is o iff A is flat disttarises
froma foliation we can cheek somecases

fl u w where u venial dont careaboutwhat w is f these coverall cases by linearityof ffl u w where uand w are both horizontal

Andso if we know that flaw o b u vertical then to see that f o we just have tocheck the
condition just for uw horizontal This givesusour equivalence

suppose wewant fluwi o Then says did u wit cont uw o Now

CanA uw Alu ACN but when w is horizontal Alm o we keral andhenie this
is equivalent to aAlvin O

fluwl O t horizontal v w
since Cana vanishes on horizontal vectors

byclaim f uw o tow

It remains toprove theclaim so let u be the vertical vector field vip p 5 fixed
We want to prove af O We have

af Luda t CAC CA

2ndA E3 A

So its left to show 5 AT audit

We have E3 it at to Adexplts A

at to rexpc.es q

A Adgat

Luck d5 o

audit dead
audit



Given a section so corresponding to a trivialisation Ia we write Fa for sa f Then Fa is
a g valued 2 form on Ua

Proposition 7.21 These local expressions glue together togive an adp valued a form on B

proof on overlaps we have sp sagpa and we want toshowFp Adg Fa

Let s Sa g gpa For any vector veto nanus

g v Rg saw is vertical
Is

andsay
RgaL Adger if

I
I

g

Since f annihilates vertical vectors we get sg f s Rg f

F Haag.FI
it Adg icf

Adgi Fa

Example 7.22 for our two connections on our trivial IR bundle it 1123 IR we have

F O A o

F dandy A yax

Notation

CaanAa un wedgebracket

Aau Aacw CAalwlAalul commutator

Aacr Aalw commutator

Aaculaalw AacwAacr



Warning Even if 1 0 everywhere global horizontal sections may notexist E.g take the trivial principal
IR bundle over s with A Ado and fibre coordinate z so it datado

localhorizontal

so
sectionsdescend

withslopes

so if a o then I global horizontal section

7 5 Algebraic Structures

Given a connection it on a G bundle P B and a representation p a alert there's an induced connection

on the associated vector bundle E Pxav

Its defined by local connection i forms DepAa

Example 7.23 If P is the frame bundle of some vector bundle F then a connection on P induces
connections on F FOF etc

Can also extend the covariant derivative dt to an exterior covariant derivative using the Leibniz rule on
E valued p form o can locally be written as a sum of expressions sax where s is a section of E

and a is a pform Then definedo sax tobe dots na t soda

Proposition 7.24 second Bianchi identity dat O

Here F is an adp valued 2 form on B and dais the exterior covariant derivative

proof Locally in a trivialisation we write F as Fa a g valued 2 form Then locally

dat drat adan nFa
eaniv.aeinmiscontext

den t CaanFa

Tinted

cannaan
so termscancelout

Warning dd 0 in general In fact at t Dep F no
T

Evalued
pform

Facetrained

2form



I RIEMANNIAN GEOMETRY

81 Metrics

Given a vector bundle E B sections of Eu correspond to fibrewise bilinear forms on E

Definition 8.1 An innerproduct g on E is a section of EY which is fibrewise symmetric and positive definite
lie an inner product on each fibre

A Riemannian metric on X is an inner product onTx

Lemma 8.2 Every vector bundle E B admits aninnerproduct Hence every manifold admits a Riemannianmetric

proof Cover E with trivialisations Ia It Ua Uaxirk

on each it Ua there's an inner product ga corresponding to the standard innerproduct on IR Take a partition
of unity pa and set g Epaga

Definition 8.3 A Riemannian manifold X g is a manifold equipped with a Riemannian metric

Write g gab let gab be the dual metric defined by gab gba gabgbc S

write contraction with gab gabby raising lowering indices

eg g'dTaba Tad

Notation didnt I dx das taxi di

Definition 8.4 A connection A on E is compatible with an inner product g if g is covariantly constant
Wrt the induced connection on EY

8 2 Connections on TX

Fix a manifold X

Definition 8.5 A connection on x is a connection on TX We'll think of this as a connection on E where E
is identified with Tx via an E valued 1 form O

For nex One EnGTatx Hom Tax Ex usually the covariant derivative is written 8 andits connection with

a vector u is written Tv In local coordinates O anodd

Definition 8.6 The torsion of a connection A on E Tx is doo an e valued z form

sheet 4 Trw Twu Cu.wst screw

The connectionis called torsion free if 7 0



Proposition 8.7 First Bianchi identity dat Fao where F is the endE valued curvature e form onX

proof both sides are dat o

Theorem 8.8 Fundamental Theorem of Riemannian Geometry

Given a Riemannian manifold x.gl theres a unique torsion free connection onX compatible with g
This is knownas the Levi Civita connection

proof we'll show that the map

g compatible f z formsconnections

d

A

is a bijection

Let Fo E be theorthogonal frame bundle of E a principal och bundle Note that e is an associated

vector bundle of focal E FoeYoon IR via the representation of ocn so connections on Foles induce
connections on E is compatible withgg iff it arises in this way examplesheet4

Fix a connection Cto on to E We get a bijection

g compatible connections on x adto e valued 1 forms onx

A o A A

Wealsohave adF E I cÉÉ skew adjoint endomorphisms ofE

canaangenaia

OLE valued I formsonx E valued 2 forms is a bijection
O Hota Ito

we canview bothbundles assubbundles of Tx a Tx Ttx of rank In In11 piggy
Note Ole valued I forms section babe of Tx a x at x

gadOdbc t gabAdac o i.e babe Abac

E valued 2 forms Odbc babe Dae

And the map D TA ta Ta

is o Dao c D b Wabc



which is fibrewise linear so it suffices toprove its a fibrewise isomorphism Sincebothhave the same rank its
sufficient to prove themap is fibrewise injective

so suppose a satisfies babe Abac andit's in thekernel i.e baes babe we want to show 0 0

We have babe Abac Abca Deba scab back babe alternately apply a equationstocycle mares around

so babe babe a D a 4 0

Given local coordinates onX get a trivialisation of E Tx The components of the associated local
connection i forms are the Christoffel symbols Tijk

Definition 8.9 The curvature of the Levi Civita connection is the Riemann Tensor R Rabid

This is an ace valued 2 form on X so we canview it as a tensor oftype 1,3

8 4 Hodge Theory

Let x g be an oriented Riemannianmanifold The metric g induces inner products on each A Ttx
if an ion are orthonormal i forms then a give a fibrewise orthonormal basis for a Ttx

We get a distinguished volumeform w defined by being positively oriented andof unit length

Given a pform p theres a unique Cnpl form p sit up forms a

an p La p w

Definition 8.10 Themap r x n x is the Hodge star operator

It's a fibrewise linear isometry 11T x 11 Ttx that squares toc 1 n

Example 8.11 Take R with the standard orientationandmetric so we doindinars and an dandies

and da nasi ax

Now assume X is compact Then we can define an inner product on n x via

La p x Secap w Sx an B

Given a p i form a p form B we have

da p x S Ida n p

f ala atp 1 and tr by Leibniz
nystones

1 S and p

a C1 a p x



So the operator s c1 d r x r x is adjoint to a

Definition 8.12 S is called the codifferential

if Sp o thenp is coclosed
if p Sa then pis coexact

can check 82 0 easy

Definition 8.13 The Laplace Beltrami operator is A as sd dts
O rP x r x

If da o then we say a is harmonic

Write It for thespace of harmonic pforms

Example sheet 4 a is harmonic a is closed and coclosed

Theorem 8.14 Hodge The map x Har x
a ga

is an isomorphism

Idea Har x KeraImd kerdnimat
kerdnkers
H x

Theorem 8.15 Hodge decomposition

For all p x is finite dimensional and weget orthogonal decompositions

n x x to or'd

x to dsr x to Sdr x

A x to are x to see x


