DIFFEREN TIAL GEOMETRY

& INTRODUCTION

echurer:  Jack  Smith (. smith@ dpms.cam-qc.uk)

Two ways o think about manifolds:

1) Twbedded manifolds ©  smoothly emhedded  subspaces i RV

€.9. @ Exknns: ¢

?
o e So\ns 4o equabion : {’17 "jq'l-\} CR

Smooth ones
nt -
e9. se(n) ¢ R (M N=|,624M=()
2) Abstmcd manifolds :  ( reasnable) topologcal space such that about each point p, 3 local coordinates such that
e cardinate fanste rmations are Smooth.

Tntringic

Will focus on abstmct Manifolds. Bul!l Actually , +he two  definitions are equivalent.

Basic  Constructions with  manifolds

® TTangent space-  linear approkimation o manifold ot some  Ppoint - ‘

less obvious N abstrack world-
smooth  maps betueen manifods 4 derivatives

* Vectw fields ond fow

=7

*  submanifolds  ( Embedded manifolds lbecome submanifolds of IRN).

* Coud give manifold woe Shuckuce and  consider grometvic consequences
e9- goup structuce (lie goup).

> tongent space o+ identity becomes a lie algebra

> 3 map fom e lie oalgebra into  the ke grup itseld  (exp map).

€.q. GL(n,R), tangent space b id = Mab e (R).  Lie a\gebra shucture: [A,8] = AB-BA.

A
exp wap AY>SI+At T.-.*---



Some questions we'll think about:
How do you diffecentiale a \eclor field?

- on R" ik easy ( partial derivatives)

n

what dooul on an embedded surface Z in R 7

problem 1 ¢ camt differentiate in

derivaiive points
directions our of surfoce. downwaﬂs
problem 2 ¢ f  gou difRerentiaie ey

along direchions in surfae, woy end
Ug with comelning Ppolnting out of surface
NOT INTRINSIC

Soln? e¥ieinsic pidure, go alng Surtace

+ orthog project answer ontv surkace

seems reosonable, BUT +his may clepend
then on e ewbedding

So  Jhis is & subte queskion!
To onswer His question,  we'll use:
= Yensorsand differential forms
=  Comnnecttions
— Parallel  transport:  mwing a veckr  along a path s-t ifs derivative i zero.
— Curvatare.

A more abstrack example

spacetime = manifold X
Quantum particle  destribed by 4 wawbunction ¥ XX > C

what  matlers in [Pl ond celative phases of W, ond ..

Examples classes  wednesdays

23 oct .30 = 3pm
10 Nov
24 Nov



MANIFOLDS AND SMOOTM MAPS

1.1 Maonifolds

Din LI topological n-manifold is a topological space X st \peX,

1 on open nhood W of p
in X, on opn set VCR", ond

a homeomorphism  £: U SV

We also require X to be Hausdorff ond second- countable

Hausdorff : for distinct points pup2 €X, 3 disjoint open Wi, U2 st p € U, pa€ Uz

UNuy = ¢

Second- Countable : 1 countable basis Lo  the topology , ise. 3 cCountable Collection of

open sets Ui s-t- Ony open set ;s a anian of e Wi

Exm 1.2 : R" is a topological manifold
* For any peR", take (L= R", and ¢ = id: R" 5R".

* R" i Housdoff | ¢g because ils meirisable

* A countable  bosis 1S given by open balls  with ratonal centre qnd rational  codius.

n 1] .
Rem 3 (i)  Hausdodfl +  second -countable” is imporiamt but
= Fr a space  |ocally homeo 4o R* ) iths equivaknt o X
Co mponenis”

not resbrictive in practice -

'S mebisable and has countably many

@) Tne  dwo conditions qre inherited by Subspaces.

Bxm 1% W X s o tp  n-manild, Hen so is any open  Seb W CX
Given PEW, pick €W SV pom XK. Then take @[ i uaw - p(uow)
Q (n\zn unw

s a homeo.



Terminology: ' + @ is called a chat about p.
' is & coordinale potch
“If a,..,2n ore the stondard  Coordinates on R", Hnen

Ko, rzo¥, ..., xn*%€  qare called local coordinates

* The inverse of a chart is & parametdzation.
- It Q,:u, Sv oand @ U Ve are 4wo charts , the  (oresponding  local (Coords  y,--y A
ond Yy, Y4n ore celated by  tmnsition  Fundion @, o9

l qz“(’:l

DFn I:S A map fom onopen Subset of K o " is smooth if i as ol partial derivatives of all orders
Given  F: X>R

preliminary dfn: Pis smoh  if Fo g i3 smoth B all chars €, i2.  P(%u-a %) iS smoth 05 @
Lunction of local coordinates-

Dfn 1-6: An oMas for a topological n- manifold  is & collectton i P Ua "Vd}“* of charts ‘that
cover X (“L.J* U = X).

-\
- An allas is smootk F all transitin  Punctioss  Ppc P are  smosth (a3 in D 1-5).

* Given 0 smosh atlas A, a Puncim £:X SR s smooth  wer A i Fedy
s Smooth V. Yo € A.



Lem 13 F is smoh w A it N peX, 3 a chart Yo about p such that  Po P’ i smooth
p[: only ¥ Vv

converse:  pake fp ¢ Up »Vp.  wTs I o‘('(;' i5 smooth. Know Y p€Up, I @ st Lo %y’ is smooth.
But then near ®p(p), we have

fo ‘fp'l' @D ‘fd")° (‘?u°‘ﬁ§') S £ IS Smocth.
?

A L]
smocr Smooth

—~—
R" Smoshness!
Cor (-8 : Given o smooth aHas, all local coordinate funchions Qre Smooth-

Dfn 1.3: Two smoh atlases A and B are Smoothly  equivalens if AVB is smooth.
* P smooth stuckure  on X is an  equivalence  class  of Smoth oadlases-
* A Smoth n-manifeld is a topological - w- manifold  equipped with & smosth strudure.

lem V0% |F A ond B are smooh odlases ihat are Smoohly  equivalent, then £ is smoth W A
e ks Smooth ek (B

pf: Example sheet 1

Dfn L1l : IF X is & smooth manifold,  then F: X >R is Smooth if itS Smooth Wt ssme  (@quivalently al)
smovth  atlases representing  He  smooth  structure.

Exm 112 = R" is o swmooh n -manifold with  smoth  Shucure  clefined by e oblas 1id:RM > R"}

* open  subsets, as before

* IF X.Y ore smoth m-wmanitold, n- manifkeld then X ¥V s a smooth (m+n) - maniteld defined b_3
product  charts

fem 113: Q) Being a topolegical n- manifeld is a  property of a topslogial space
(i) Beig a smwn manifold is O property plus & choke of Smooh Shructure
Gi) o nes, Ruewy topological  n- manifold  odmits o unique Smooth  Structure
(W f  nwe, o topological n- manifold may odmit ne Smeh stuthure  (eg. +he Eg 4 - manifold )
or multiple  different gmooth Strucrures  (e.q. exohic S, exotic RY). Bur hese resuds are hard!

DEn L3 For o smaw n-manifold X, +he integer n is the  dimension of X : dimX.

Note: ' you're +ree to add charts + your afas, as long O3 +hey preserve  smokhness.



Exomple (.15:

O] gven pE€X ,and an open nhood W of p, we can always +oke/ add O chavi abowt P Contained in w.

() can chosse / add local Coodinates about p  Such that P corvesponds 4y the Origin  in +hese  Couds:
take oany chavt ? about P and (omsider ® - @Cp).

(e ;.0 —= vV ? - 9P means subkadt ta R

EXM  (16: The n-sphe, S", i the n-wmanifold whor underlying top space i SaﬂR"“ﬂlgl\’:l} c R™
With  subspace  topdogy.  The Smovh  structure is defined by #r following otlas

There are two chavis: Py : Ut = R" , where Wi = S"\ 3,(0;0,---,0,‘!‘\} ( whoe - nmh/swl'\n\

ond Rt i¢ srereo graphic  prjection sher™'

A
formula: &3 ('5\,..., 'jv\f\) * 13 Yam (‘9"“ ’ ""‘)

Chech:  Lrunsibon funckins are ook -

+ Yi
Local  coordinabes: w* satisfy A7 1T Y

Wt -
The  height Function Yasr S Smoch  Since s given by  Yny T T [ i)ty 0N Ut



1.2 Manifolds £rom sets

observe: ¥ X is a manifold, the charts  know the fopology in +he sense that : a set wcX

i Qx (W) is open in R"  for all Charts Px (Yo are homeomorphisms )

(cweck)

Suppose  we're given:
*a s+ X
a collection ﬁ,\ku\au. of sets covering X
* for eoch *, an open sed VaCR" Ond o bijection Wa: Ua > Va.

Suppose  thos Y e,B , the set Pa(UxoUp) is open in Va (o ®Y), and the wap
Cpe@a : Pa (UgNUp) = Pp(Ua DUR) is smovh ( CR"= C®),

is  open

Din 113 (Non-standard)  call such data @  Smootw pseudo- atlas on X, and the Pa pseudo - tharks.

Declare a set W in X to be open iff Vo, +he ser Ya(UaOW) is open in R".

lemma 1133 This defines a topology on X

(check)

Pop 1:19: Apart Ffrom the possible failure of " Housdoeff and second Countable’,
hpolcgical n-manifold, ond the pseudo-adlas is a smooth aHas ( hence it defines Qa  Smooth

the resuting space is a

structure).

pf: We heed +o check +hat  each Ud  is open and each Qa is a homeomophism , i-€. +hat

Y WC Ua,
W open in X & QPal(W) is open in Va.

: is obvious (check) we declared W to be open in X if ¥ o,
> gl uahw) = Pa(W) ¢ PalUa) = Va is open.
&

Suppose Pa(w) is open . Then ‘take any f>, WS Ya(wnup) is also open.

We  have “fﬁ( \Nnu‘;) = Ypo Yoo Ya (Waup)

= (W"’o %‘_9" Pa ( W) NQa (U W) Using fact Yo is bijection
A —

°Pc'\ OPC"
(‘fa ° ‘(’f;)-‘ (open)

preimoge Of Open seb s open- under Cont-  map.

"

Sﬁg fwo  swouth psewdo -okHases are equivalew i their union isa smodh pseudn—q4las~

lemma 1.20: Equivalent smocth pseudo atlases define +he same wmanifold siructure

P UdOW) is open n RN.

Buy W ¢ Uax,



Example 121 : The n-dimensional real pojective space RIP" is 4he space of lines

* Pny nomer peint in R™ defines a  point < %Y € RP".
M lines arise in iwis way
c {2y =dyy & w:ay for pome e ®R\1oS

So we con lavel points of RP" by +the ratio [ %o:-~:2n] caved o mo geneous

Define the following pseudo charts :
For (=0,...,n, let
Wi = (0% xn] 2 1;#—011
ond  define a bijegion 9 ¢ Wi = R by [er- it (R Ky xn)
x;

This is @ smoth pseudo- atlas and makes [RP" info a smooh manifold  (example sheer 1).

note: | change RP"+o @P" and it all SKIl Woks nicely (foms  Smooth  2n- manifold).

Example 1-22: Take X= RxThd/a  where (%)) v (x2) i x<o.

. n+l
in R

Coordinates .

Pseudo aklas Given by Rx TS —>R. Bu X is pot  Housdodl. 7\
cant

separake

Remark 1:23 : Need not start with a set X, pur Could start with
i\lo(} in R" and specify  how to  glue fhem in Some smooth Wway.

1.3. Smooth maps

(0'\) and (0, 2).

Fix  monifolds X,Y with oxlases % P ud-’Vd}o\en and 1‘1’{5‘- sp 7 Tp}pes .

Dfn 1:28 & map F:X 27 is smoovw iF iks conkinuous and VYa,p,

poFeoda's Ya (FCspllava = T

,Rdmx dimY

IS Smooth a3 a map between open  Subsets of and R

RemUZE: we osk ¥ o e cominuous so eear  Wx( FUCSp)) is open, so thad

Example |-26
(;) idx is Smooth
(W Any constand  nnap is  symookh-
Gii) e projections  pr, : X xY X ond pry:XxY =Y are smooth
(‘“) The  iaclusion §" — R™' is smoeth.

lemma  1:23: We nave +he following basic peoperties

Gy @A map eX PR s smooth  ff ks smooth in  +the Sente of 1.1

Gi) o map between open  Subsets of ™ and R" is smooth iFF  its  smookh
calculus  cense

smodhness makes  sense.

in the mullivariable

Ui) Swmookness is local  in the source: its enough to check it lo0cally near each peEX.

(v o Composition of smooth ™OPS 1S Smooth-



) +
Examele 1-28: Viewing c™ as n\“m, can  Haok of ST a5 the unit sphere  in ¢
wn+

Any  point 2€S™™ 4then defines o point Cx € CP". This gives a map  H:S - cP"
called +he Mopf map . This is smooth  (Ex. sheet 1)

OFn 1-29: A odiffeomorphism X =Y is a smooth map wWith a smooth »wo-sided inverse.

Exm \30: CP' is diffeo. ¥o $?- Soit makes  sente 4o vhink of CP' as a sphere - the Riemann  sphere

Lem 1:31: If XY oqre diffeomorphic , non-empry  manitelds, dim x = dimY.

B pick o point peX , and a diffeo F:X>Y. Pick charts Y: U —= V obout p, W:S =T about

F(P). By shrinking charts , wiog F(4) =S.

W——s

! J' lq dim¥

md;mx7 \ <] T ¢ R
H
- ‘f-l - -1 -1
Le‘ f:mx w;'F °T C'mdi:Y q oF o Y . The'\ G and H are MIH’IAQ"B inverse Smooth maps between OPeh subsets
NcR an .

Then D?(,)G? 7 Py (reey H ( inusual multvandble Calowlus sense) are  mutually inverse  |inear wmaps

dimx
[ , 2 dimX = dimY.

1.4 Tangent Spaces

Fr an  n-manifeld X 0nd a wink pEX.

¥:I>X , I= some open n-hood of OER

Dfn 132 : O turve based Gt p 1§ @ Smooth wWap
ogree to firsr order OF P if there exists @

such Mgt W(9) =P We say  two  auwes Y., Ye
Chart @:U = Uabout p Such that

(P ev) (o) = (Pez)(o) (%)
“«Z: derivavive (wst k€ 3)
as vectors in @R".

ldea: \?
—_ wiog  Cp) =0




lemma 1:133: TIf (& hods For Some chard & Qbout P, +hen @ hods for all such charts obout p.

pl: Qiven a chart Y avour P, weite Tpt Lo 4he map

mef ¢ T tures based ot v} = R"

A can ‘e represented by
. ”
¥ (@eY) (o). e gasian of a8 e
Q(¢), So (smposition o

muWiph (a¥inn are eauiv:

Now suppose ¢, 2 are *woe difterent charts aboar p.  Twhen

where A is +the derivative of  Wwaoc,™

A1
by the chain  rule, '\'l'pq,z T AeoTp "

ar  w.(p).

by dfn OF smeoth oMas, @z o @' s Smooth aad so Facebian delerminant is non3ec

Note A is invertible. So for curves Vi, T2, we have

M) = W) e w (v = net ()

Cor 1.3y : Agreement fo ihe it oder 15 an equivalente relation  on warves pased dt p.

Dfn 1-36: The tangent space +o X ot pis denoted TpX, iS

3 curves based ot ,}/

agreement o Firsh
J ocder

We'll write  C¥]  fo swe  tongent vector represented by Y

Prp 1-36 : TpX naturally  careies the Stucture of an n-dimensional yector space.

pf: fo each Chart ¢ about p, T\‘pkf induces a wap TeX =M™ . This is +aurologically  injective-

will identify  TeX with R", and +he identifications
by a lingar  Ouromorphism of R™: dhe
vector  space  skructure on TeX is  independent of <.

We Caim its surjective - | 5o, then  Twpf

for  diffevent difter mop A from above. So  the induces

I+ cemains to prove we? is surjecive.  Take VER™ Ond Consider the curee Py t @' (ece) + tv) defined
on some gsmal nhood of o (-E,€£). (Basically

fake  siraight \ine passiag +hrough lp) in chort and v,
and map batk ont> wanitold)

\ v
WP)/

™is  saisPies  Tp T (W) = v.



Dfn 1.33: if wy-,mn are lowd\ (oordinates  defined by ¥ ard  €1,-..,€n

s  4he svandard bosis of
. r) i .
R", then write 3%, o™i, 2%

fo +he tangent vethr given by (we®) " Ces).

Intuitively, 9 is +he direction  optained

by mMoving along the xi  Onis- T-e.  keep all other
constand and increase x; O unit  gpeed.

o z ﬁ R
I 2 .3%) =
T - DN
% 31 J=i M« J
‘[39 o
0° .
’ > vaea well ,
: (e
! PYy T (‘T" )
Caviesian  Coords. polar coords Q
?5,] : (“P j (e'.)
(nuJ
warni“q: The Vvettor =; dgpgnd; on all %y, not jusy Ni. \’QAWJ\ [ 2 [ Se €
Eg F: Yi,.--,Yn are local coods s.+ Yyi; =i , ¥hen it need not be true that 99| = ‘3,,.'.'

2 %
lemma (387 3y © T 3y o

pf: Vet ¢, %2 be Jthe charks defining ,y. BY debiniion,  dy; = (ne®)' (ei). e+ A - o( % ,q,.-')'

so ot mpT i AeTT L Ger 2y, = (me )T (ATE). mae AT = D% o) . so
- . - N} .
A'e; = Z‘. 3_'5) €j . Hence 9_%‘ e ‘ J .
P\.\'- : ] "agx 230 ° - ;; :
: e ) 3 n 1 o "\ aa
gﬂi - (“P ) ( 3 i % o %T: P

= Z —%Ii (ne®) ™ (e5)
! - =~ ('n ,Q‘)-‘ s \wear D

J

Rem 1395 1If C[¥1= Zai%a | quen  (geov) (o) = Tef(v) = Zaies
N ™

i component
(i ev) (o)
Hence, ai = (wiev) (o).

So inwe (oRfficients o€ the Dai are the derivatwes of the i alng Y.

The tangent space of X ot a print P is  represented by the sel o curves wp bo first ocder yposed o+ p. Under

the map .“P‘e ] T?x way the sraucture of an  dimX T v - dimensiondl  VeUml space . A BOSIS  of TpX 1§ 4hen

= (ﬂ,‘*)"(e‘.\. ANY cnoite of chary @ ooeut P Will do, l._yg\iut an Qqu'Nﬂlm\' (retaved by A above) -

Equivalently:  can cowsider 4vem O3 lineav

[ Xp: CH(M) = R +he Qdion
map P by

[*]e TeX = ( 3 "Y).(°) = J?. ( #4ev) lt=o

Which obeys the Leibnit rule from the produtt nule on  aiferentiable funchons R">WR™M.



1.5. Derivatives

{ A X .
TFix  wanifolds N ond o smooth map F: x>V N3 %, 50 To¥: 1 Y
(vased av ©)  (vosed ov ¥(¥))

DFn 1.#0:  yie  derivative of F or P, witen DpF , is dme wop  Tex = TeY ; (YY) > Crevl
We  sometimes write DeF s Fx, oand caMl it We " push forward .

lemma .41 : Twe wap DpF is well defined ond is \linear.

pf:  Fix o chart P obowr 9, W opow F(P). e ‘ave

(Weorev) (o)
(@ svo ¢) olg o)) (o)

Twet(Y)

v
Tegy (Feov)

"n

Where T ’-1)(‘0"“‘(’“). So ¢ Y,Y, ore fwo (uwes ‘ased or p with [v,):=0Y2] ‘twen
(Foxd = LFeval  gince wp® (W) =(®eov) (o) = (@owa) (o) = Tp ' (%2).

So DeF is well -defined, ond Eits In¥ twe commutative diagram

Op F
Te¥ —— Te Y

R
. V)
)
RN ———— R
)
¢\l @
So  DF -_\nm)- T eTe' | and hene § linear. ‘:l

1f w,Yy Ore he ocal coordinates associared with @, W, tnen woFN‘?" expresies T as g\v'.ng

Yhe y's  in terms of the x's.
% 2Y;
So T is ( )"3) . HQ“(Q DP ¥ ( agi) - Z‘., ;_‘J‘ ?‘jj

Rem .42 (1) The new notion of derivalive Coincides with the usual one for mMaps T:R™ -~ rR"-
G) T3¢ £ is a function X >R,  then of (i) - x; . — standard (oordinate on R,

@) For a curwe ¥ pased at p, we can write (¥ as D.,Y(Be).

¢ <)
Pop 1.43: Fu smooth waps X > ¥ 2 | we have

Dp(GoF) = Dy G oD F

Pf-. For TY) in TeX, both sides give CaoF oY) ‘:l
Remember again,  Dg(G) ord De(F) are mMOPS berween vector spaces.



B VECTOR BUNDLES AND TENSORS
2.1 The tangent Bundle

Given  \o(al coordinates %, A0 on on open seb WCX, weite a,,..

, an for  the compoments oF a
tangent vedor  with respect tv

?%,,---, 9xn. This Qwney  (oordinates

(-’."...,‘lnlau...,ﬂn) H u '\'u -_ IR""
pewn

Doing this foc al coordinate padches (| on X defines a Smookh pseudo - atlas o

x:= L Tu
peu
Definition 2:1 = twe tangent bundle of X i X

eauipped with twe manitold soucture defined by this
pseado otlas. T+ jaherits  Hausdorffness

and  Second T tountability  from  X-

Example 2.2. TIF we twink of S' g ge? . eem} cR*:=C

, ‘hwen a\&hough the \ocal <(oordinare & s
multivalued {F we by to define It globally, the vech

99 is  well- defined a} eery point. So ¥he wap

(p=e®, ave € Tps') € 15" & (.0) € S'XR

is a diffeomorphism.

We'll denote a poiat in TX by (pv), where peX and Ve TeX.

Definition 2.3: A wector field i§ a Smooth map v: X = TIX suth  bhar  v(p) lies

in T?X for al) L F)
i-e. Ve p = (povp)  for some vp € TeX.

2.2. \ector Bundles

The tongen+ bundle  TX of g manifold X \poks \ke @

smoothly  vawing  family of Vet spaces
parametnzed by X. Such  gamilies

olLur in  wiany  Other situations.

Detinition 2-% . A vector bundle of rank K

over a manifold ® 5 o wanifold € equipped Wuh:
A Smokh  surjection W: E B

* An  open cover T Ualaen of B ond % each X a diffeomorpnism

P ° W' (UNa) — uo xRF
sucw  Yhat

prooda =T

= -
- N o,-, bthe wmap QP"éa has  she form

(Uaoup) x RE  — ( uanup) x &"
(b, nerR®) — (o, Spa(b)("-))
for some smooth wap Ipa * UsNUe = GL( X, R).



The  manifold E is +he 4otal space, B is the bose, T i3 +he pojection, U '(p) are tne
and the &4 are ol trivializations - The 9pa Ore  transition Lunctions.

Remork 2:55) each e €prT(P)  pas  Hhe Strucure of 6 K-dimensiowl  real vetror space

fibres (denoted Ep),

Remark 2.6: reaVly each tvivializaton $a i like a chart, and +he Collection i@q’suu 15 like on ohas.

“There's  an  obvious notion o  eguivolene  between  4wo  couections, ond  #e equivalente

Care  about-
Remark 2.3: can gimilarly define  Complex vector bundles

3 - 13 - T . K
Exompe 2.8: E = BXxRY, i“«}-'{ﬂ}) $:E BxXR te owitus pap, m: pri

This  is ¥we wividl Ve burdie of rank k over B We say dis 4 gibal bwvidlivarion

€Exomele 2.9° TX i35 @  rank n vector bundle,  phere nz dim¥%

class s what we

we denote the rank K
tivial bundle by R ¢

the base B is clear

Dfn 220 : A section of a bundle W: E-B g a Smoth wmap S:B2E gsuch +har TeS = idg
Example 2Wl:  The 3ero secim s given by s(p) = (9,0) Nop.
Picture -,

Example 2.12: A vechr field i @ sechon of TX

Q section

/

Dfn  2.3: Given @ Swooth mop F: B, 82  and Ui :Ei P8 | g mopnhism  of

€L B2 (overing F s a Smosth wap G €€z such  anat

veChr  bundles

. “zo & = F o w,
© Ve, +e induced wap (e)p — (€ is linear
£, ————¢ o e
' 2 T, ot :(r,v) ¥ (a,w) q‘>
n.l l“’z Fom: (pv) e p Hoa B ()7
B, —F——b B Wence G maps  Librewise (] (El)'F(P)-
An  isomorpwisma  between  vectr  bundles  over B is & morphism Covenng 9@ With & twp - sided inverse

A pundie tsomorphic b & trivial  bundle is called trvial.

Example 2M:  TS' 5 trivial: Ts' = ¢'xiR, (p,a2) +— (p.0)

Exomple  20S A morphism 6:mR - E Covering  jdp i3 the fame ing as & glecal seckion.

G s(p):* G(e) ank 1 enyial bundje
s ~—— G(e¥) - = ES("Q
eE
——

wmu Wipli cation by +-

LS
% puahon !



To See +that S s Glpt) = ts(p) 3ives a bundle  morphism: Clearly  the map iS  Smooth ; |°m"y i
(piv) is  an eement of E, then € (pv) = (p, tv), whith is Smooth and respects the Smooth  structure
on ouverlaps: wWe  have  har Gi(psa) = £s()

G
R —8 €

i ™

B —— B
id

sy sipr> (p, VR, Y:p > R then Woprs R B (pWIe p, and WoG: (pa) > (o, 431R) .

So G covers id- OF couse, the induced Wmap is linear-

R 13
Mere  generaly,  mophioms RS —> € Comespond to  KAuples  of 3ections . The mophism is an  iso morphism
itf 4we K-tuple forms a basis in  eath fiore.

Definitim  2-'0 : Given 0 rmnk- W vedor bundle €, @ vank- L Subbundie is @ subset T of E Such that
. R -
Np€EB, 31 a trvialitation d - TWe (W = UxR™ ynder which e (W gets sent f  UX (mfe 0).

0 vector of

. E . €
Can  then  (define /¥ ond get  wophisms v > ¢t — k. longin K - £

2.3 Consiaucting Veclor Bundles by Giluing

To define g vedwr bundie over B, its enough o give :
* A set E

* A wop Un:E 2B

- A" open cover Ul of B

‘ For each d, o bijection o 1'(Ua) = UaxR®

Suth  +hat PN o@« =T , ond on overlaps §p° ‘54-“ (e)*) = (P:QPa(P](“‘)) for  some Smooth
3[’*“ »Ua AUp GL(niR)

Then our pseudo atlas  constmction  makes E im0 o wanifld  (outomarically Hausdorff  + Second- countable), and
the @« become bivializvioas.

Example 2.12: let 8= RP" = 3 lines R"“} . Let E -3 lexy € RP" x R™ :x lies in 4he \ine labelled b‘s?!l
Define w: E> 8 by (pv)=> P . open cover = T w 20 % re s %] i #o}};”'“_’n‘
Define Qo : (W) S UixR vy

( (%e:-..:20n] , A (%, "tn)) — ([x.-....:xn], mn)
\/\_/

Check: well defined.

Then we have P .6; =T, ond d, oé;-‘( [1.:...'.‘!'\] ,'t) < (['l.-..-.:'l.n] R tlll)

What oare e  dransition  funchions? 95+ WinUj = GL(LR) =R

[xe: -2a) ™ 50 whith is swooth since AL % F0 00 UINYj

This s the  Tauolegial  bundle over RP".  (}ine pundie)



In facr we can dop +he se+ E and just Specify an open Cover iua} of B and smoorh  wiaps
9ps: UgNUp = GL(KMR),  such  +hat:

gda(p)= idRF V¥V «,p.

Na,p,, Ova = Jvp Opa 0n UaOUpAur (cocycle condition)

Then define €+ U uxxr’
2 46.“-',11&‘)'\- (pcup :%.(r)u))

The  (ondihons above make “~ an equivaience relation.

Example 2.18: For ony re€ %, define a \ine (rank 1) vecor bundle over MIP®  Advialized over the Wi,
Ajy -
Where 85 = (Z)7. s is denored Ogpr (V- The tautelogical bundie is  Oggn (V.

lemma 2:1: ¢ W:E 28 5 q rank K wctor bundle, trivialized over 1 Ua) With dransition  funclions  Jpa, Hhen

ifs  iSomorphic +o  the output of the QboVE Constuuckion.

Corollay 2.20° To show two bundles are isOmorphic, it suffices +o find ‘tvivialiaQvrins over +he same open  Cover
With  the same tansition  funcrions.

Dfn 2.21: Given o bundle T E B qnd O smosw wap F:B 2B, +he pullback bundle F*¥ € has

b
tal space U Eeen
[14]

With the following bundle Stuchare :  Syppose E iS bividlived over some (Ux} of B with ‘ansitan funckions

Opa , then FYE §; triviatiaed  over TF'CUa)}  with  transition  Puncions Gpu o F-
Lal3
~ i : E Idea: essentially
/L\i\ tmansplant the fibres

) $iomn the image of F

in B onto the preimage

points in B.
8 B

é?

i-e. F"E)P" Exco.
DPfn 2.22: The dual bundie e’ is the bundle over B whote total space 1S

Ll (€p)" & tove aual o ibees

pes v -1
4 (9"“‘) = (9 “PT)
Triviatized over AU«), with transition functions  (gpa’) (cF the dual representation).
Example 2.23: If E is locally  Erivialized by Smooth  sections Sy, 5k Over WCB , Jhen the
Pbre wise dual basis defines Smooth  sections o, ox of EY over W that brivialire it-

locally, each veclor ‘bundle  looks lke WX R® &« some chart Ux. we Saw before that  a  bundle is tdvial
it 3 a bundle  morphism 3" = B covering the identity oaB. We can think aboutr this  locally: 3 o bundle mocpwism
o RS = w'(W,), namely Fu Fr R € nis i equivalent to a lota section, ond for R* = E  this is equivalent

t a cellection of K local Sections . Since this s an 1S these K Seclions fom a  basis in each Pibre.

Moto: E is locally trivial iFF 3 q collecrion oF lotal seCtions Fforming a Fibrewise basis.



-4 The Cotangent Bundle

Fix  Swme n-manifold X.

Dfn  2.24: The (otangent bundle of X is +the dual of the tangent bundle- Standard notation: TFX.  The
Bore over a point peXx is denoted Te'x, ond i caved +he corangent space ot p-

Consider iF\mcHom at pk = i (u,f) : U an open nhood of o, f:uw-R sw«oouu}
We say £, 2 ‘ogree to fist oder’ ab p if  Dpf, T Dpf: &
Proposition 2:25 : there's a canonical  iSomorphism

3$\Andiw\: a+ 93/1 — Te'x

[\
The dual vector bundie has tibres E(m") “' “e. i linear maps : R "\?sl, | via the Standard pairing. So to Show

¥nat we can wniak OF TSX a3 the equivalence  classes O Functions that agree up t first order, we just need W show

that each equivalence class  gepines a linear map { curves based ar "}/ girst order — R thav s b'ujv.(h've

\] . .
onto UK") . (As in oll wwe defined linea, maps O3 a space  Ore in  viecten with l\%")v)

Proof:  Theres a poiring

s Functions at p) X i Curves based or 9} — R : U::'V\ — (t-\')'(o)

This  induces a map Hom {'Fundions at py — Tt x g > (M '—7(;-\()'(0))

Indeperdence of U’o’\")'(o) = (.(: ° ‘-P"ocp.y’).(o)
choice of representative: (8.9 :;(»,‘(o))( "“7') ° )
2 (Fe R, (2072, Y: Tai3 then
= (F 2 ¥2) (o)
In  Coordinates, +his wap is e(5)(¥) = Gov) (o)
2 20 £o%u)(e)
i 9 A . —l
R e Y

We want 4to swow that @ is surjective and +har  O(F) = 6(F) & F, A fa

SwrjeUive : The Coordinate functions themselves -, Xn Ore gent to +he duals of =i
Tee  O(x) = ( ZTaioxi w05) e i (i) (%) Sy
28, _ o , )
Lot part: observe 4t O(R) = 8(f) & 3% G -,3?:|, Vi & Db = Dfe & A D

Novice 4hat if £: W 9R is a smooth Function, by the proposition, £ defises an element of  T*X for
each peEU.

lemma 2.26 : <his defined o ( Smoh) gection of T* X over . We denore tis by df.

of: We Sow in e  previous oroof  (suriectivig)  dnar @(xd) =A% . Jo that dAy, ..., dxn  gre



Lbrewise duwal 4o Sa_x. ""'?'-u-n- Hence (,by examp\e 1.25)1 dxy, ..., dxn i a smookh lasis
ot  sections . By ), we oer

ot - 7,—-%%. di 9—()\;‘\ = (Z'Q'.Ga: — Zai (Y] l,)

r kX

? : . a . a’
Sine  di are ok and o i ok, 3 dF 5 smooth- ( Zai 3ni — ))

f: W-> R is smooth, and pel, then we get an clement OoF the cotangent space e X, In

partiwlar, we 9et an element of T:X Hc al peu. T.e. VY peW, & gives rise b on assignment

of Q4 covector ov@f edch point PpeW. ThS assignment (s Smook, Qe is A Section, which we denote by

(Lt)cal|5| we saw  +hat we hove a basis of local sections denored d:;, wWhich are dual %

the local  basis 9x; foc  the  tangem bundie . Then dad P "_"((4"3)9: ZQ; 92 v a:,), and

hene by ¥ :
( . d H Z ¢ ‘

df s p — ((af)y: ZTaida’ — Qi 3,

So we can write

9
df - Z_ i
[}
Llervma 2. 13: PR Section of T*X iS colled @ I-form. The \-fom df is caved  ine oifferential of f.
truction,
By  Consbuc 23_ (3) }
df(v) = derivative of f inine direction of V- df - 2 5 i %) ;':j

Remavk 2-28: eoach dx; depends only on i (in  contrast 4e %_,;, which may depend 0 all i i),

*
Dfn 2.29: Guven a smotw map F: XY | the map DpF' ¢ TeY — To' X s caled +he pulback
by F, denoted 7.

Lemma 2.30: TIF g: Y- R s a smoth Punction, +hen Ffdg = d(9-¥)

of Given a vetr [Y] € TeX, we have

¥ (dg) (1¥) = dg( F+(¥)
(F* dg) CvI) = dg(%‘:(("])) = dg(CFevl) = dg ((Fo¥]
2 (g Fov) (o) 1 : (pq)) ()
* ((3e¥)¥ V) | - (\a.pm) (5)
= d(geF)(LYI). - d(aﬂ;)

says that d ond ' Comwuie  on  pundions 9:Y =R



My own additions

Dfn 13: A (ocal fame of E over U is an  ordered K -tuple Sy, Sk oF Smooth  gections of E  over U
So +hat for each pel, se), ..., Sk(P) foems o basis of Ep.

local
Caim: 4 ¢rivialisation o E on WU U equvalent €o a local fame OF E on W

_L“- Suppose ‘(U“S B a cwer o8 B, and we have O b4 lisakien say (o diffeo)

Go: TT'(Ux) - U« x R*

Then we can oefine o local fmme by  Sit Ux > T7(Ua);  gie) = 35 (po€) | where e s the
frondard basis o RS- Clearly tmen on Ep, £Si(p)S;,,.,c o ke the srandord  basis .

Now cuppse on U e have a local Hfame St o Sk We woant 1o define @ o well, 4or any peWUx,

$ilp), .., sk(p)  form & Lasis, and s in fact € %€ Ep, then 3J ! scalors ¢y, Ce st

k
v = 2 Cisite)
131

This '8 sufficient data t= define de. we define Oy (v.ve) = (P, eyyeicr) which is clearly a map

T ' (ua) — usxR*. 14 s alse  clearly smeis in p, e the Siare gmoweiap. In Fau, s
d  dufgeo ( éx-'( (2] Ci,..pCe) & (‘P, VP) (vhete  vp = ,Z" c 9"("\, and  Hais is b\;jech'vg bC. SiP) fvms
a bosis. T a Rneov  somophism  on che Bbres, siace  it's  ceoliy just Swapping one  basis &
Onother:

On the pullback bundle: ¥ F:B B2, then for T:E B8z yectr bundle, we deline
e = Y (p,e) e B, xE : F(P)= ncer}

This s a well detined  yecter bundle witvw rejeckion W':g¥E 98,5, (r@) W p. The following didaram
pre) 9 9

commutes:
L)

fre > € where  we sel h: (b,e) & €.

el s

B, — B,

Tis  bundie  has  Fbres  (FE), € ¢(e).

(T we Bx peB, then (U)7'(p) = 1(PE) € 1pSXE : fep) = w(g\&
* f(pe) CHesxE: & € u'(F))§

= i(Ple)€7P§XEZ R € Er(ﬂz

A
= Eep



2.5 Mulkilinear Algebra

Fix W,V finite dimensional vector spaces over K-

Dfn 2.31 : The dtensor product WAV (or wewY) is o K-vecw space  generated by symbols

uev For weWU, veV modulo some relations :
(W +2Uu) @Yy = A, (u8YV) + 22 (W®V)
W ® (Vs +maVe) = o, (UBVI) + (WO V)

lemma 2-32: it €,-4%m 5 a bosis for W and £, Fn is o  basis for V,  Haese

form @ basis for WOV. g5 dim( ueV) = dim(u) dim(V)

Worning :  Qeneral elements are  nol of +he form UBV,  ur  rather Some linear

lemma 2.33:  Tensor product ' funcorial: iF % U= U ond P: V- V' are  linear, 1 an

U@V — WOV' denored by o ®P; defined by

(xe P)(uev): o(w @ p(v) ond extended linearly

lemma  2:3%  (Universal property of @)

P wmap WOV — W {5 i same as o bilinear map WxV =2 w.

Example  2.25:  fiy U, V, W . Cowmposition defines a bilinear woap

L(V.W) x L({wy) — L (w,W)

2
inear waps
vow

Ger on induced linear mMap L(wV) @L(vw) — L(w,w) ; Pee(t—»]'soo(.

N
Now take WU=w =1K . Then we Oet vV ey — K

This linear wap 15 callld  Contraction-  Otwe +emsor foctors (ome Olong for +he vide.

e-9. AB\NV'®@ver — A®@KeB = A®EB

Mote: temsor with  Ldim space dors noving  (linearity properties).

T.e. Conbmction OV = K jg induced by Wxv oK, (8,v) — elv).

¢ Ry, &n  is a basts % V, and Ev-oo) € s pne dual vasts,  Yaen

€@ Sy, or I Aj £i®Fj > FaAu

elements § ei®F;Y

tombination of WOV 's.

induced map



Dfn  2.36: The densor algebva oa V@5 TV = @ Vv o= Kove(vev)o--

r=so
This is a K - 0lgebra With  multiplication

ven x ot — O
(v, a) — rveq

t.g. (24 Viov)xv3z: ANz + MOV @V3

1. +the Multiplicalion s Qssociative, Unital  and non- commutative.

The exterior  algebra AV s e quotient  of TV by the dwo-sided

ideal generated by
elemenys of Fhe foom VeOV.

[ the smanest subspace  oF TV  comaining each VOV ond Closed under wuMiplication 0n botn sides].

e.9. Vi®Vz:@Vz2Q@V3 V 0 in the quou'em- This is an uswc(auve, unital q\gebya. Wreite I\"V

for the image of ver - called +he r*h exierior wer of V. This
9 po!

vepresents " Signed
r- dimensional  Volumes Inside V.

We write A for  the product on AV induced by © on TV

f.9. VWw®ve — ViAV2

a
Ny A\

note vAv =0 VYv.

lemma 2.33: AV s gruded (ommurative, ie. PAQ = (D" QAP for PEAV, QE ASv.

pf: oo V,weEV, we have
0 = (Vtw) A(vtw) = VAV 4 VAW + WAV + WAW = VAW + WAV
1.e. YAW = =~ wWAvV.

This deals with res =\,

Tre  general cose Follows by associdtiviey:

e-9. (vinve) A (V3 AVyAVsS) pick up rs winus signs. |:|
NN



Terminology :

Dfn 2-38: By 4 mubkiindex T, we wean a +tuple (i\,...,'\r) ot elements n 1\;---,“3 i strcky

lacreasing ocder

e9g I: 2,35, T:= 1,3,3,% edc..

T @  basis e,y en of V, write € 1 for Ry A--- A &ir  Similarly \write
€1 ° E&4A.-N€ir S dual bosi €y, Eae

lemmo  2-39:  The elements €1 where T ranges over |k -indices ot

lengtn r,  form O basig
fx AV. So  dmA'V = (%)

v
lemma  2.40: There's a  natural isomophisw (I\'V) = AVY {nduced vy the pairing

(NvY) x AV 3

(G‘A---hGr ;W A e) —————s Z-s $qn(9) Bgqy(v) ... Ogcry (Vr)
T (4

Note: €1 bewmes dual 4o T1i under s pairing.

Lemma 2.%': A" is  fundorial , ve. foo ony licear map X:V SW, we gt an teduced map
NN — AW,
Ny A-ee We — (V) A--- A alve)

(X} A"V is \ -dimensienal (dimV:n) . And ine  jnduced ap A = A i e
Scatar  det ().



2:6 Tensors Gnd Forms
Just a3 for twe dual bundle, you con  ypgmcle funclonal  qigebraic gperators  from veChs cpaces to
\ector  pundles -

EX Gmple 2.42 1 Guven vectosr bundley €E,F — B, trivialived oer 1Uay Wwith Leansivion funcrions

Ipa hf.d respectively,  4wen E®F 5 +he bundle over B  with glore Ep ® Fp over p, and

tansition  Lunctions

9pa® hpa @ UgAUp —> GL(rke, R) x GL(vrF,R). = GL( rke +rkF,R).
9pa O )
° hpa

Can similorly define EoF, E®' , NE.

Example 2.43: Given a sSmooth wap F: XY , DF is paturally a4  section of T*x @ F'1Y.

( For each pEX, we hawe
(*x @ r-*ﬂ), s (1eX)V @ Ted ot L(Tew, T,mﬂ by sheet 2
need ¢v (ook a4 4+his

Dfn  2.44: A iensor  (Rield) of ‘ype (p8)  is o section of

(TW)° @ (1*x*
An  v-foum s a gectien of N TEX.

Note  wnat  +his  Coincides  with our earlier detinition ot a \-form.

Example 2.4S: a tensor o dype (®0) is O section of R, i a smooh funcion £ X-R

(avso caved scarar fietd).

A temsor of kype (1,0) is a vectr Field , type (oM s a 1 -Form.

In Loordinas es Ny, 2N, an r-fom o looks 1ike si'xx dxy ) where [ 1 are  Smoovn Gundrlons,

ond  We Sum over mulkiindices o lengtr -
\We con view Yhis 05 a ‘tensor  OF ¥ype (o) \ia

dxi Ao Adxi, V—/—/— .-E's' son(s) dxige © - @ Atigey. (%)

Example 2:4b: ogn W%, Q 2-fwm looks like fdx AdY  for  Sume smotw  function §, ond

We cCan view iy as

£ - (dxedy - dy @ dx)



Warming! = some authors divide by vl i ¥

Rliernative description: A"V Qenerated by  V.A-.. AVr

modulo IR N & TTIE SFTETY I WY XY
= Al ViAo~ AWAAve) (VN Av; A--Ave)
?
and Wi Aeos AVEAo AVG A AV, = (1) [ A A nw;n...v,)
(.14 *u\®4
Tensor of hpe  (pg) = seckion of (1X) @ (1YX)
Smooth
LD(G“\’ - ‘o /' Functions
i)yt
T T g | 2708 - 0Pnie B dj 6. many,
T T T S S
1€ eie
Eg. R® with codioses (Y.
Tensors  of kype (a2) = fu dxedx + fi, de®dy + F2, Gy @dx +f,, dyedy
= dx ndy dy ndx )
< - o\ildg
1 - Poim : g dx A dy.
Tensoe of type  (0,2)  becomes 2 -form: ($ia - €21) dx ady
To Qo from - founs b0 (0,¥) - tensors , Send dx Ady (d‘l ®dy - dy Od‘x)
1f F:X=»Y is a di ffeomorphism | then For any +ensor T ona X, ‘there is a iensos
FaeT on N of the same type, Called +he  push -forward by T.
-Iv
(Fe T)y = Image of Te-y) under Deyy) F on each Tx FaCtor, qnd (D, F) on

m the  TEX  fackors.
op )
(TF"Cy)X) 8 ( Ty X) *

Similarly, we @n  fum a ®nser 7 e Y inve a kenso F¥T on X, the pul bock by F
Can do +he same with forms insread o tensors.

I TF: X =Y is an OYbih‘mb Smooth 'Map, a(m can no \o'\ger plASh forward, and can only pull back
(0,9) tenses or forms . So given an r-fom A on N, ¥« is an  r-fum on X



2.2 Pbstract Index Notatrion

A densor of wype (p)2) i written with  p upstairs  indices, Q downstaics  indices

EYQmp\e 2.4%:  T? denoves & vechor Eield > Ta denotes a |- form- A fense of +3pe Cz,))
. . b a

i Writen either Qs _\.ac ) T b</ Ta “, depending  on Whether we're  thinking
of # as a section of Tx e TxeTk, Txg T @® TXx, o T*x @ Tx 87Tx

Tensw  product 1s expesied by (Concatenating .
Example 2.48: SaT® js q #ensor of fype (M) given |o5 SeT.
Contrmdion U expesed by & repedted inclex; O0ne ups¥airs and one  downsiairs.

Example 2.49: SaT™ represens the \-fum Sa  (ontmcted  with the vectw field T-

Similary .

Sap T4 represents  (ontmching  the second T*X  facdter in S with the TX Ffacer Ia T.
The specific Choice  of  Jabels  for the indices oloesnt  maber, but Fur an equality  to make senge,
Sw must  lave the Same uncontracted indices on bovh  Sides. Reoruering indices  (orrespords Eo  permuting
He Factors-

9. Qab = 3pa

Warning: = This notarion is  independent  of Ony Choice of basis T%% does not  represent Components.
However, IH's easy fo +um Hwm ivo coordindle expressions.

. i3 . i 2,
E9 wite 0 vedor bietld T os T ax' s where T' ogre e  components of T werr 3’ (note: now

Wreiting A 0 1.').

Similarly, o = o dwn' . \ve implicitly  sum over repeated indices (one up, one dows). The expressions

for  ® qand Contruction In  Components  look exactly [ike they did in  bstmd index  notation.



ax' T g5 433
B DIFFERENTIAL FORMS Using  Summation  Convention 3
. dxz'
o= oidal o(;( ;lj ds’)
at’ -
. . T i gy 99
3.0 Extevior derivative. Yaxi g
Supose o is a |-formonX. TIn loal Coordinates, &= o;dx’ . Llei's by to naiwely  Cifferentiare -
24; . .
et —. dxJ@ da'
on!

. 913
In different  Coods Yi, we have oz oo dy' , where p(;l: =i %) . Then

2y e noive derivavive
in § coords s ,
ELE i ; 2 91") ] .
— dy’ @a ’—'-(“*—-. dy’ @ dy'
33’ 9 5 ag) 39 .’ J
- 2dr x* du? i ?:""n ) o dy CEA v
- .3_3_1 .59_: Y od\" + Ax 39’33'. d“, y - 'b?.‘ dx' = d=x
¢k . -
—. dy)
3
. . dx Y .
%d‘gl . o a—"dg’ = —: dxt® da*  + dx 9_: dsjeodg'
24 AxXg  Y; ox 2y’ o4t
change of
- iu_ﬁ d". Cocdinates

EXT)

PROBLEM :  amswer depends on which  local coordinatles we use . Bub  the .;’.vrw ferm"

IS Symmetric, so we
can kil it by yeplacing @ with A

Definition 31 The exterior derivative of o, Oenoted do , is defined in local Coordinates by

d« = _31' d‘lj/\d'l;~ (dot o 2-foum)
)]
By the Calcularion e Jusy did, this is (oordinate  {ndependent- o~
Warning!  This does not  work for VeGhr fields.
PLS :
Definition 3.2: TFor On r-form X = olg dx", its  exierior derivative  dd := ;? dx’ adx?®.
Eosy 4o chek nis is also  Coord independent- (r ) -form.

Lemma 33: dis R -linear , oand on O-forms (functions), i+ ogrees  with  the differential.

Pmposi&im\ 3.4: d hos the Hllowing properties:

@ d*:o ig. oldd) = 0.

W For pofum d, g Fum p,  dlarp) = darp + (D xndp  (guded Leibmiz nie)

G d(F*) < Fde)  for amy smow map Fix Y, «e a'(N)



proof: 1) Toke o= oy dxl locally . Twen hove do:
L3 b 1]
d ( —_— dg) (V)¢ 3
%)
. \ 2
H ? oA 1 dx‘ 'y d'l.) Adﬂl = 0 Siﬂ(e ;‘_)'911. H 91‘31) th N '|s an\issmme{-dc_
axna.,.)
An aside: It a \-fom &=z df, 4nen ddzo- So % Pind o \-form  Haal's ot *he  differertial
of o function, s enough 4 Pind one, say o, skt do #o.
Q-g. o= 7“‘9 on ‘R, .
() Wil = ozdxl, =y’
Then d(«Ap) = d(og p3 dr? rdv’)
%“Tt f;Jd-&.rl\ dxT A dax? + ol %L:-i d-n'Adv."' Adx?
X 3 s 3 P i)
- (;1—"_ ax¥ads¥)a (pyad’) 4 (o) (otg dx?) (,—,,..d*"ﬁh’)
= daap + (-DPandp
(3)  Suppose £:X Y smooh, o< a"(y).
Let o= oy dyt
Then  d(F5) = d(F*( xady"n ... ndy")
= d(lwge¥®) (:'dy")a.. A (;“dy"'))
dV*gl" by an edrlier result in Seckion 2
: d((cx-uF) d(ye®) a--- A d(yet)) lemma 2300 FHd§) = d(fo¥) =:d (¥*4)
> d(xze®) A d(y'eF) 2o d(9eF)  using Leibwr + dP=o- (i) and Ci)).
z F*dc(-;_ A T-”dy"‘ ... AF'dg"'
s T'* d ( o1 dfl“ LYE Ad."") by section 2
T F*(dd ] D
TIn foct, 4these Hhree properiies uniquely deiermine d 0mong all IR -linear maps ao°'(x) » o £\ (X).

that (oincide  With d on A°(X).



An r-fom o s
¢ closed if da=o

¢ exadt if IP osb x:=dp

Rem: by () aboe, €xad foms are (losed:

3.2 de Rham Cohomology

Fix  on  n-manifold X, and wate %r(ﬂ = {1 closed r-&«ms}
B (X) = 1 exadt l'*'meS}

We saw ot 8'(X) © 2°(X)  since d?=o-

Definition 3.5: The r*" de Rham Cohomology  group of X is

H r (X) - "(x)
dR {,(x)

an R -vedor space . Note \'\dar(x) =0 for  r> dim(X). By definition, Hunr(x) =0 for vco-

o F(x),
Exomple 3.6: We have Hgg (¥) ® (/s'(x)

. 3 Cuncteons F:X3 R Sanisfying df =0} at .
: /di(-ﬂ forensY z g af = Z I dx' z p
1
T 1 Buncons FOT Tiube %155 4+ linear independence
df .
Tlocalty constant Functions } 5 Fizo vi
2 §$pace of functions on (omected Lomponents o} 2 £ s locally constank.
< l&t tonnected Components of XY
So dimHga () = # Connecred - Components Har (X) = R° , where ©: # of conmecied components.

r
Exomple 3F: we have Hgn (pt) =0  yoless ve=o  (Siace dim(pt) = 0).
By previus example,  Wig(pV) ¥ R

For o closed form o, wrte (AT Por g class in Har (X) = +he " conomology class of .
We say o ond B gre (ohomologows F [l = Cpl



Example 3.83: Wwe Wnow

0 Wt rton
Hat (5) = R il reo
Eorey

.
We have W= %/8'
= [} -forms o 5‘}
o «-foms on Aﬁ(ermﬁa\s}
of

) 9eneral | -Gorm of onS' looks like  $(o) d® (obviously Closed  since d(F(o)de) = 3p(8)dendes °)
29
whilst a  general diffevential  looks ke 3(0) 48

’

(wwert £,9 are 2T - periodic  Sunctions),

L1\ 1
Nove  4nat go a'a 40> 0 by FIC  (am- peviodic, So (M -3(0Y70) . quis weans tnab tne map
ol — R . ke)de o7 £(8) 48 induces a well - defined map

1: Ha(S) = R.

(3
This map is ObViouﬂ’ \near , and Surjeciive ( toke §= \) 9(9) - -I\,, _‘-\u') dt
99 9 ) . 2 -
¥ . = 0 de = F(9) - ¥()
o6 - 26 Jo FLt o6 ( )
i i i where F Is  vue ompiderivavive of f
Clam: I is an 150 morphism. ’ ;(9,) e

pl: Just need to prove injedtiviy - So suppsse 1 FdB) =o. we wamt to find some g  Such war  F: 8
Debine  g(®) - [N YOI T g is 2W —periodic  since  TI(Fdo)=o.

lemma 39: ( Contravariant uncoriality).

0 T2X Y i3 a smodh map then FY: AT — AQ7(X) indues o map  FY: Mar(Y) - war(x).

P we med © mow anar it e 2T, ten  Fa is clod; ond i o'z &+ dP, then [FY¢] : [FYa],
e Flat Fa i exack. These follow fom TV Commubng  with d-

e il dotzo, 4nen dF*«:z F¥da = o
‘ F*(dP) = d(F*) so FY(AP) i3 ase  txoa. |:|

lemma  310: Wedge prduct of forms nduces Q product en I-\;m (X). This is  associative, gmded
wmmutative, and unital  (constank Punction 1)

\or\

pf:  Suppse o, p ore dosed- Then d(onp)= doap + (-) " xAdp = o . So oAp is closed.

Also
epresents O (ohomdlogyy
(« +dV)A(p +d8) = w AP + dYaP + g A dS  + dYAdS rcmss gy
T ooAp + d(vaAp) + (-0¥d(arg) + d(vads) " .
So (d.\. d‘y) Au& +d8) 3 COW)MO(QNAS ko o(l\c;. ( wel d'ﬁ'\eda e Cal '\EPJ 1S defined D

independens  of choite of repres entative )



Propesitien z.m: IF Fo,Fi: XN are  (Smoothly) hemotopic, then ihey induce e  Same map Har (1) = Har (%)

Say o, Fi X 9V are  homotpic if I 4 Vomotopy between them, i-e. A& Smooth wap F: X x Lol =Y Such #hav
F(-lo) = Fo, F(-) = Fy

Corollay  3:12: If F: XY i a  homotopy equivatence (3 G:¥X st GoF T idx ond Fog X idy),

then F induces on isoworphism on Cohomology, ie.  FY¥: War(¥) = Har(X) is an isomorphism.

pf: ¥ suc a G exists,  then prp 3.1 says ot GY¥F¥ = idx,and FYeG = idy . So F¥ is on

]

omorphism  with  imerse G .

Example 3.13: (Poincavé Lemma) R ol n, Har (R") ¥ war (rt).
3.3 Integration
We want o define § xW fr X an n-manifold, w 0 Compacy - Supported n- form on X-

We need +wo tecwnical ingrediemts: ocientations and partitions of Uity
Orientations
o -o0
9. jm £ dx could mean f_,,, o S . We ned » specify  Which one  we wean-  Need On orientotion 6a X.

Definition 3-14 : an  grientatien of an n-dimensional real vector space  V is O mnon-:em  element of A"V, wodulo
positive rescalings-  An  ordered basis ©y--,€n  induces an orientation @i A---Aen. AN orientarion of a

Vector bundle E 2B iS Q@ nowhere - :em section  of N**E moduloe rescaling by  posiive Smooth functions

We say E is ocenavle if it admits an Ovientation  (equivalemr 4o A®TE being trivial), and it's oviented iF
it's equipped with a choice of  Orientation.

_ 0P
An aside: N E  gnd nowhere vanishing  sections

claim: Suppose T €E>B isa vank \ ( line) bundle. I€ € oadmits a nowhere - vanishing  section , +hen
€ &s tavial, i-e. €7 BXIR os vector buwdles.

a\S0
Define o wvecror bundle  homeomopwism ¢: BXR — € (c\early  cwoovn)

(p.t) +— ¢-s(p)
(Le,®¥) ¥ (p)v) €E)

And  this IS in fad a vedor bundle iomosphism-  Noxice (1) +hat Fo: IPIXR = Ep ; (pA) > A-sk)

is a linear iSoMorphism R - EP, and  (2)  Ale squave tomnutes ¢

(L> nowhere vaniswiag s) 3

xR — > E

P, l Ky

b— 8
id




TIn  derms of the Rxtevior power of a yee vundle , the +top one ¥ conshucted a3 Rellows:  Ler
Qpa: UsPUP = GLg, (R) are +he tonsition funckons, aen A"Ee (n = rone E\

Idea: tawe a4 mnk- k vl €, with transition  Punckiong Ypa: Uahup = GLn(R) , and
we can fake the wedge of FRibres AN"€p, and gque them together via A" 3px en
the Overlaps- Notice now  that A" €p s one -dim, and +nhe map A“g‘w S given expluicitly as

(f\“ 9[5‘) ( @ A.-- I\Qn) = Ai’:l gpq(ei)

= n.'::‘ (i‘ Qj'ce.i) using oA =0
J=! NAP’._ -I'l;'\“

-3 n "N
= 2 (")‘ ' !:\-' 9ieci) A'\:\ e = dek(ﬁr,a) e N---hen

TeSn

Example 3.15: Gny trivial bundle is Ocientable. But O,mn(") S non - orientable. nem:
L> \ine bundle , line bundle is grienravle
Definition 3.16: @& manifold X i3 ociented if it's tangent bundle TX is oriented. & odmits nownere vonishing
setrion
Example 3.F : S™ js ocientable Y n  (it's the boundary of the ball). < gwes vb W & BXR

. . : (o, - s(b).
RP" @5 no always  orientable (shm 2). Filoaty e e

Sending a basis for V. & its dual basis  induces a wmap N VY. This induees o wap NV - I\"Vv,
Which  beComes canonical  after quotienting by posivive  crescalings:  So orientations of \ are equivalent
Yo orientations of V'.

D efinition 318: A nowhere vonishing n-fom on an n-manifld X s Called a volume form.  An orientasion

of X i equivalent 4o a volume form (up to positive rescaling).



Partitions of Wnity

These  Qllow us 't patch together  lotol  Constructions.

on  open (over ual of a manifod X, o partition of unity sSubordinate to this cover is

Definition 2.19:  Giiven
Ya: X = Loy} gq}ishj;ng:

(1) Collection OF  gsmokh  Puncrions

* Va, Supp ( Ya) € W
|} - & closure of w h{
CloSure ( qu ' (‘R*)) :nke:e nnn:::evql::.! *

® N PEX, 3 open neighbourhood U of p such that QU but Pinllely many Ca vanish oa W (local Siniteness)

. .z(q, =V (consvanr  funckion).  Lotaly sme sumis  Finile o makes sense.

Lemma 3.20: Given any open (over TUS oF X, there exis @ portitien of wunity  Subordinare o it.

P'Wf’ See Lee ( Theorem 2.23). (nonexaminable)
e outside of a
/ ompoct subset of X .

FiX 0On oriented p-wonifeld X ond & Compattly Supported n- form W on X.

Definivion 3.2 Twe integral of w Over X, clenored  SxW , iS  defined as Folows

* Cover X by coordinate poxches {Ud}  Such hat WLOGB e local coordinates Gre oM positively odented

ocientation on X). remember upto  rescaling of positive smodkw

(i mne M Oxn  (oincides  with W
funaions

* Pk a parktion of unfy I Pd} Subordinare 4o 4his (over.  Each Pa@W  hay (ompact Suppork Contained in Ua.

Write it in coordinates O3 (Pt W)ia.n dxg &--- dxg

L

A Wua integral of a
CompacHy  supported
function on R".

. eFi
Pefine €A

wa = Z f (Pﬂm')h---l\ d‘*‘---dﬂl
R

Lemma 3.22:  This s independent of choices.

Coordinare parches it Coords  yp, Oand @ parktion of uniy

Suppose L VYPY is anotwer  Cover by

pf:
Y Y subsrdinate to  Hais Cover- We wam o Show hat
g Iﬂ\“ (cu(ﬂ)\x...n dx'...dx" = } Im“(crpu\ 1ten dy' ceedy®
wulply by Sp
‘ i€ *wis s =1
We  \ave g Iﬂ\" (ri(ﬂ)\l...n dz'...dx" = Ef‘ Ym“(c‘p)(?“w)umh dx'... dx® n:: ,:,:w‘! s s
= A'p .
z },; Smn “’clcp'o)‘;...h det (;‘—"“)i.su,-.,n dat... de®

“% l\mn (P«X Spwd)iz..n dg‘... dy*

3 D o) et ay
g



Remark 32

(at ww Ginively moany terms are ew) . Fr all p € Supp(w), I open

() AL e sums invelved are finite
supp(w), Whith is

finilely many Pa Gre nonxero. The WUp Cover

set Wp Containing p on whith only
subcover- Hence oqly  Pinitely mony of ime Paw ot noner:

tompact-  So we can poss to & Finite

(W) we uged orientedness of X 4o ensure  Anot |\ Jaccbians  Qre positive.

3.4 Siokes' Theorem
The  fundomental Theorewm of Calcwlus  Says  Yhot o O Swmodw  Cunction § on (/b1 we wave

[ VRN T (DR

a = J
Sx 9X

Sehing X = Ca,b), e can  write twis Qs
bounﬂnj of X

Dfn  3.24: A (Smooth) n-manifod - wih - boundany iS an  ordinany  w-manifold  except ¥har  Codomains of

R0 x &' [ A funcion £ on on open  Subset W of

Chorts  Ore  Viow gpen  Subsets of [ S 7
onioining W such that L exiends

Ryo X B™' 15 gmooth if 4here  exisks on open set W' i R"

o o smooth  Aunction en W'

Smooth  wnaps are defined (A dne  obvious way between manifolds - wivh - bounday, £ X is O wanifold —with—

boundany , +hen iwe boundamy  of X, dencted DX, is twe ser ot PEX st g Some (o equivatenty ,aw)

Charts, : U 3\ containing p, N 5 ON open  Subset of Ry X IR™' ond Qele §oYy x wr™.

The interior of X, denoved X s X \ax

Example 3.25: (V)  An  ordindy w- manifold X is an  n- manifold - with —boundany,  witn X = @.

() Twe interval Ca,b) is a  yoanifold - with - Yboundany. X = Gaib}, x°= (asv).

B)  he  Closed ume von D™= § *E€R" : NxU €1} 5 an n- manifold - wivh - boundany,  \yivlh

D°" = open unit all, 90" s

(v) IF %X is a monifo\d- with - boundany and N is a manifo\d ‘then X xY

T¥  has  boundany X kY.

Wwarning: ¢ X, ¥ o= WMWS, then XY need ot be O MWB. Ti wmay have (omers ar x KIV.

Prop 3.26 W X \s on n- MWB , inen X° is an odinany  p- monifd  and  3X s an

ocdinany -V - manifeld.

p{-. For X° s immediate . To DX, for each poiv p€ BIX, Ond each charr Q: W->V  Qpour o,
define AU = uA¥X

= \Q"((ﬁ_o} X R"") n\l) ov =z (Sey xr™Y)av
Then W IS Gn open nhood o p in X ond BV is open 0 Fo¥ xR T W™, I:’

And ®lau: 3 O 3V is a chart e X qbowr P

is 0 manifold - with - boundary



Theorem 3.2t ( Stokes' ~Theorem)

I¢ X is on  odented n- MWB ond W is G Compacly supporred (N-) -form  on X, hen

J‘ tw = J dw
X S
(v : X 3 X inclusion)

Bn  oside: X S oriented as follows: gquppoe  pe @% and  TeX s ocented by Ox € N Tex
let  ne TeX be oany owwad pointing  Normal  vector - Then we odemt  Tp3X by Oax  defined by

Ox = NAOGx 03‘ "

Exum(’\e 3'13.' on ‘k»o X ‘kh—( ’ oriented bs 31‘ A--- A?ql\ ) “he vethors - 3" .|3 ou‘wmd- pﬁ‘\“ﬂg

So the induced onentaron 39} YR g “ 9wz Ao A Pan,

Proof of Stowes :

Step 1% rveduce o O Coordinave patch . Cover X by (oordinare pakches  1U«) and take o partiion

of unity  UPx) subordinate i Anis cover.
Then Sy dw = §,d( g paw)

i Dy T T S (T paw) = 2 5, At (e

So s sufficien+ 4o prove
Sua dlpaw = §augtt (P .
S¥ep 2: compule ‘ooth  Sides.

By  Skp 4, ik suffices do  prove the Theorem for X = R * R™L By o omoactly - supported
=) - form W on His  half  space , Wwrire

~
we Zwidx'aAdxiaLAde”

< - T A N, .
Then  have 1t z widwo A... Adx on 4he boundaw, Which is 105 XR™ (s where x'vo)

So using the induced orienkation on the boundaw to give a winus:



Nore dw =

4

A

Tw; d'&‘l\

: e. Adxt A..-hdx“)
]
~ .
s Zdw Ada'a... adx'aeondx”
]
T dwi N 1 Ai n
: Z 2 )x dx’ A da'a...Adx' A--Ada
i)
El [
(usmg anzo)  F ;w: dx' A da'aAdxtaooadat
i
z ii(_l).'" ?a% dx' Ao Adn*A ... A da"
-1 9w
So  tnat Sx dw = Z jx (..|) ! h‘ dw!... du®
)
aw " ) .
= f)( Dﬂl d‘n ..o d2 + 2 (- |)' I ; d':. . dn

"

o

l’,

ow\
| ( J\m E‘ dax

') dx?...

i- et
"y 2 (-l) IJ ( J\ da d") da'
R %0 %2 R,, xR R
Te fundamenal Theorem of Caluwus  says 4hat
- dw, '
- J\Rn-l ( J\m,. 3a 9% )da’---dx“ = - wy dztodxt o J‘ Yw.
Jo§ R X
foc  the other +terms,
dwi . a
( 3? d"“) da' dax’ dx" -
B;oxl'k"' ,’\
3.5  Ppplications of Stowes' Theorem
Comllany  3.29: (1Integration by parts) Let X be an oriented n-manifod , and let o, p be a
(p-" ~form and an (n-p) ~4orm  on X , ot 1eASt one OF which S CompocHy  supported.  Then
-Ix datp < (-l)P‘[o( Adp  + Lx o AP
x
me: bg Shokes ,  we have
Sy d(xnp) = 3‘“«"(5
63 leibnit e,
S, dlxne) s § denp + )P andp
Pub  these fogether &0 get the  result .

L™,



Proposition 3.30: IF X is a compact n-wmanifeld, then
induces a map Het () — R

PM’F’ Suppose a,ﬁ are n- forms on X, such that o= P*dY for some () =Fom 7.
Then
- _ ~%
qu ._“x(s-rgxdr §, dv = f. .1 -0
A~
=0 by Siokes since X has no boundow).

Comllary 3.31: if X is a compact , oriented n- manifold +hen \-\';R(x) +0.

[? represenking orieniation of X
proef:  Let w be a Volume fam oa X . This i auromatically Closed So i} defines O class Cw) €WV,
Ond we have gx W20 . So [w) %o L

T \ no (n4) - foems

. . on an n-wanidld
nownere  yanishing if Cwd = (o3, then

S\xw:st‘): D



[ FLOWS AND LIE DERIVATIVES

4.1 Fows

Fix Qn  n-manifold X  ond a vector field \ on X. Given a point DPEX, we can flow along v fom p

“@. we can twy and Solve the ODE for some  v(R) VL) €X, 50 V(T () € T X
2 s whith assigns a vector €R"
) = VYR . YO =0 to the poir T(k) n a smooth woy.

By standard ODE  theory, 4this equation has O Solwtion defined on some (-€,€) e €70 sufficiently
Small.  Moreover +he Solukion is unique  and depends Smoownly on v (i.c.s). The solutions ¥ are
Called integml  Curves of V.

Dfn 4.1 ( not -standavd) o Flow domain iS an open  neighbourhood W of L0y xX inside RxX
Such  vhat WV pEX , wme ser WU 0 (Rx3%pl) is commected (ie. IS an open inteval around the origia).

Din 42 A loat flow of vV Comprises O Flow domain W and & Smoth map & '-kl > X Such that-
¢ d(op) e Rx X

d
. a Q(t:?) H V(a(hp)) \d (‘t,P\ el bix p and yw 3“ +he
inl-egml curve of u throughp
s  called a global flow it W= [RxX.

By ODEs discussion, Joca) Flows always exist and are  unique in +he sense  that it P u-=-x
D: V23X gre tocal Pows +hen & = D on WOV we write dt:= & (+-).

. S 2t _ ISt
PI"DPOS'IHOA “.3: If @ \$ the local flow of v B Yhen @ C @ = é Wherever this  makes  sense.
. -t mt -1 ~ 0 . .
Se in  parkwlar, ¢ - (- ) wherever +his makes  sense (@ ° = idenvity by din).
- st S Zt
pmof'- Fix P EX Such inar Q{(P) , @ (¢) and %ﬁ o ¢’ (e ore defined. Ler Q= bt(P\.

(») = §(a)
. a) =
Consider 4Ane  Curves AR m:l- o) < F s W) <3

*1 ( )\ = Q ( P‘ %2 (0) = @““(ﬂ: Y

Our Qssumphons — ensure  that By, B2 are defined on  Conl. Moreover  they savisky ¥ (- a4 = ¥ (o)
and V.2 = sy (3.3 and ¥ () = sv(¥2(3). So ¥ oand V2 are both inlegmi Cuwes of
SV Wwith  4he Same inhal  (onditions.  Therefore 6\ = ¥2. Mence

v (@0sie)) s
= sv(mn)

e.9. ;,§(as,!) = d%s $ (s ,p) :_(2;) @S‘,@{ () = ’6'\(\) : .0 = Qc*t (P) D

Dfn u.u : A veckor field is cahed Complete if it oadwmits a global £low-

Nov all vector Fields are Complete : (e-g. %% 3x on R), but Compacty  Supporred Vvecwr fields ore
compieve.

t —“Iu) °N
(Consmc& a loal flow O en (-€2)%xX, twen define AN foc NIY0-  This iS

well  defied oy prop 4.3 )



Counterexample 4.36. Let M = Rand X = ¥?<L. Then the integral curve of X starting at
. . o 0% %y & B 15 the solution of the initial value problem
4.2. Lie Oerivakive

%:\2 and x(0) = xo, (4.46)
which has as solution
* =1 (4.47)
Fix  monifold X, ond veCle field v. § be o local flow of v. The corresponding flow is

1
@ =1 (4.48)

which does not exist for all t, since the denominator is zero when t = 1/x.

Dfn 4.5: The Llie derivative of a 4ensor T on X Qlong Vv s

Wieg flow domain (-€€)xX
d *
takes  +ensor of—t\jpe (pra) o LT = & (37 $: (-ee)xx > %

%=
q ensos eﬂ pe (pr9) °

I+ wmeasures how T changes along the Flow- I¥'s  independens of cChoice of local  flow 6.

(i independent of choice 6 flow domain)

For Gn arbitray t we have L looking a} ¢ -o.

d

d k¢t ‘1 ulls ack o a
dat t)* T= 4w ‘h” ( @“hy T bosic fack of calculus u)m“ o‘: “(-;:: ,: fom
one of X.
* t
= dh \h.o § (6“) T {Hh b (@L‘)‘ (ummubmiuig of +
- (89° i». (‘.3")* = (@) (o
: L@t)." (éh)* (tommvﬂf;ﬂ“’) [@b)
5 O
- (9% 2.1
lemma 4%6° For a function §, Lof = df0V) e com) b tv) = (5 1) (0
. dwb ; Av)
for O veuor fed w, Liw = (V‘ e - W ?x‘) in local coordinates.

fixe

poof: For a Punchon §, and an arbitmy poitt pE X, \e can think of  F(&,P): (£,€) X a5 +he

curve  based GF 5 pepresenting the wedor field V ak p (vP)). Then we nave

[ws’ : :_5 ‘e:o (Q‘)*":

d
at |g=¢ ('P° 9!‘) (dfn o pullback  op funcrions)
= (£:8%)°(0)
L

ét IS an integral Curve

de(v(p)). represeniing V-

To  prove wne second pavt, ler ¥ be a teal  flow o w. MY o poik p in our Coordinate parch .

e sz(?\ * ﬁlt“ (ik)*w(") Pullback o a veckr field
d 5w = (e®) "w)(8)
s = &) Y
. ;1 @ (€ip) =\,($(t.?)) d |k. (%Q) w(l'(v))
d by definition of
: = l e (DP Gk)'l ;u .. 9 ".@t“,) locar  flow

d
mayoe pullieg du
b tront includes
the Dp?

L" :-"Iun ¢-t°?“°¢t(")

&la

Rem:  0(t) means any function
d%lg(“/"): "*’(LP(“’F)S MY sun ta e = 0 s t20

w( T )

d
In partiowar , ;,.Lfgi) oo



[itHe o.
Let p have coordinates (=) . Then i’*ﬁ’) = it {v"ﬂk((\- .

-t

§ oy ( X+ eyt +ou:))

hene  97%0 9'e 3% (p)

- : . . . !
S RN (% vt +u (o uw;;j) +ou)+o(u\) [4

. : . - aw' . . avl
b +tv! 4 yw' +utv? 324 - tv' - tuw’;;j 1+ o(t) + o(u)

d
£VW = dT’l(-.:o aQ

Theredore - t:0 ¢
I doni really get this calc-
2w i ?_!'> 2.
B V7 ond T YW oxd/ an!
lemma 4.3

and vecwr field T,

(D) pr a t-fom s
Lo(sat = (£uS)aT®+ sallyT)*

() w any temsors S ond T,

[,(se1) = (LNeT+ Se (L,T).

prof:  pulback  Commutes with  Contraction Gnd fensw  product- The rew#  dnen folows fom the ordinany product aile:

Li(seT) = dﬂb en“y)*(sm)]
b déiltw[(@t)*s @(q)t)‘-‘] by Punctoriality of enser

z ([3 @,e)‘SJ e(@‘)'T +(¢t)“g o{dit (67*1_] )L“ by product wwe

.4
T\ at

POLSET 4 s LT

Bl rolal o)

Note : Lew = =fWV , wWhith was no  obvius from the definition. (see itin Lemma y.0)
Cv,wl:i= Ayw =- LwV.  This makes +he

of two vecror Pields s
equipped with a  bilinear  lacket

i a Lie olgebm: O  vedor  Spoce
Satisfies twe Jacobi identity

Definition 4.3: The Lie Bracket
space of al vector fieds on X
opuatiss  that is  aliernaing  ([v,1z0)  and

(2. c9.®9] + C=2,tay)) + Cy,C2,2) =o.



Lemma .9:  The Lie Derivative  is diffeomophism  invariant, i.e. if F:X =Y is a diffcomophism, then

F‘(fv 1) = £r"‘v (F*T)-

T a densor on Y

N a vector #ield on Y

prof: e ave F*(£.7): F*(‘%\m( bt)u"f)
S at ts0 F‘(it)* T
= ;t t:=o0 F*(Q{)*(F-)* F*T

s d e (Fle@e®)TErT
e
flow of F¥v

* pulls  forward ont \, opevies &°
ﬁﬁv (T- T). and wen goes back 4o X. D



4.3 Homotopy Invariance of de Rham Cohowmology
The Lie derivakive is related o +me  exierior derivarive
Definition 4.lo: Given an r- form & ond o wvecwor fiedd v, weile W O Vix  fyr  dhe  (r-D) “fum
\l“| qc\,...,ﬂr
(thncl n o Piest entvy o r-foem  With vectr field)
Llemma 4.1 ( Corton's wogic fomula)
Ly = d(rea) + 1y(d)
\)mf-. example Sheet 3.

Recall (Proposition 3.11: it T, TiiX> Y are homotopic , then TR ga df.
Frwf of proposition 3.l

?mofz Suppose F:foxX =Y is a homotopy FexFi. Let 3 be e Rew of I, ie
tonslation in  (0.1) diection).  Let e be +he map X— Collxx, = (oY) S e @k"io'
and Te = ¥ oo ig.

» tod
For any r-fum d oa X, we have e - Foxt = S, & W'o db by FTC.
d L - \*
L“‘—*(F°§ °‘°)°‘ dt Fo = Fole = Fo (b oin)

s W a@) e a

. [ - \\]
N w@t) b, Fla de See  @ffer dPn 4.5
o Beere AL LG
C AL EE) - @) ) @Y
- (#9241

Assume o« 1S closed. Then by Carton's mogic fomula,

Lo Fro = d(lét o) t 1y, (ds¥a)
~—

=0 Sinte o .
closed + dF¥*: F4d

| .
SQ Fl* < - Fg"d s S, ('t* d(l)t F*“) dt

= [haligty, v%) a
‘;n"x -——

(F=1) ~fom on X

= d(S.,l 't: 15, ¥¥ dt) Which is  exact.

® (r*«]: [Rte]. []

o 2T &1 @ s 2y (894



[E] SUBMANIFOLDS, FOLIATIONS, AND FROBENIUS INTEGRABILITY

51 ZImmersions, Submersions, and |ocal diffeomorphisms

Fix  manifolds X and ¥ of dimenson wm and n, ond et F:X =Y  be a smooth map-
Definition B~ fFis an immersion / Submersion/ local diffeomorphism (at p) ¢ DF is in)cc&‘wﬁl Sur]ecuue/
on isomophism (9t P).  The

poinks p a} which F is @ submersion are

crivical puiats. A pont g e N is
only  regular puints .  Otherwise  its

called ‘requiar  poink ‘et F,
and all other p are caled

a reguiar value if ' (y)

containg
a cvirical value.

The name local diffeomorphism is jus\ified by *he following -

lemma G.2:

IF DpF is on isomorphism,
Flu:w =y

then 3 open neighbourhocods W of p, V

of F(P) such +nat
iS a diffeomorphism.

Poof: pick charts P avout P, Y about F(P) . Then 9:= WeFeo !
invertible  derivative a¥ ®(P). By inverse funcrion +heorem | fhere exist  open
of @(P), V' of WoE(p) such +har 9 is o diffeomorphism u' -
that g is a diffeomorphism  9: W 2V, where W=7 (W),  w=p(v) .

is a wmap R” = R™  with

neighbour hoods W'
Bub Unms sags precisely

]

Example  5-3 : Consider +he map (0,9 x R = R, (v,8) = (rcose, rsing)

So if we vyestick the domain to (0,0) X ( 8o,80+2W), hen

This is a tocar diffeo.
(0,0) x (80,00+2%W) = |g’~\ Ry, o - (CO3%, ,Sin0,)

it gves a diffeo
R* - the ray where map is mb injective-

So  (r,9) give local  coudinates  on R* \ Roo -(Cos 8o, Sin0s)

withow! inverting any big functians.

Note » iF  F:X Y is a local diffee ob peEX, and Y, -

+ ¥Yn Qre  \qcal
Y0 F,.., YaoF  qre

ods  about  E(p), +hen
Coordinates, ¥ is  the idemity  Similarly *
then %, o B, Ano B,

ceey 3'we \ocal  Coods about
T(p) in which Fis He {dentity.

\oa\ coodS about p.  In  these

My,--5, g ar  local coodinutes about p,

Proposition 5.4 :  Suppose  F:X =Y

iS an imwmersion at p,
eXist  cowrdinates

Y,,---, Ym abour F(P) such +hat
(in +hese coxdinates F

and %y,---san  Qve Coords about p- Then there
yoF = ( ..., %n ,0,..,0)
looks like IR"= R"go » R"ER™" =pRr™)

Similarly, if Fis o submersion OF p,

and Y,,... ,ym are  coordingies about
Ay An about p

EC(e), then I coords
comporents -

in which F is @ prjecton onle e Fist m

proof: Half of proof is on example Sheet 3, Qnd other half is  simiar.



n m
Pro® o® Locwal immersion Ahm- let T -X =N ve an immersiog

(oordinases  about % oand g = F(1) 3o that

ar * ¢ X . Then I \ocal

* \%¥s Like  projectidn  onto the fitsy

n
(oordinares "

» O R OE

et ¢: U >X and ®: V>N be charh  awwnd =« and oy

respeckively, oamd by shnnking

W od y if necessany let 9 be commutative  diagqan

the wap Bem dhe

n “
Then F an jwmersion at p precisely gcays +nat 43, * R = ®

It
omume d9% B a

in‘Jec&ivg. BY & ounge o basis,
Mo of P Brm

h“amgnl 3 t oblaln A MHM [ 3N X KM-Y\ - ‘IM ; G'IL" ‘) L (9("')/ Q)- Twen dGe
ot twe FPm

Ta 0)‘1
O Im-n m

S iavohble B  lowl  dMdfcomuplisy,. Now @ and G ae oa Lol Jufftey b o, So Wo®
it Al o« ocat ddlee a¥ 0. swifiaken ahosds w  We G : VN
|

a  loah  parmwehaban ot N
neafl

il W 1 e caronital immenta, an gz &eh

2 (Wuﬁ\"’l': Wwed = fFo@

Ss  Haok £ u \oaldy  equiv: & canmial

immevion,



5.2 Submanifolds
Fix on  n-manifold X.

Debinition 8:5: A  codimension -K  Submanifold of X is a subset 2CX sSuch that YpEZ, inere
exist  local comdinates Ny,.-,An about P in  which Z is  given by My z.es zAK 0.

Warning: = This holds V¥ peZ, mt VpeX.

€.9: Z =(|R"\1°})X7.°} C X=R?® isa submanifld , bur pear the 0dgin its nor defined by  the
vanishing of  (oordinates ( (o0.0y ¢2)

Note: « £ inherits a topology fom X, Which is awewatkcally  Hausdorff omd  Second Couniable.

* Qbout each pEZE, e have hice coordinates X1,--wAn 00 X . Then kb, s Xn give local

Coords on %
* The bmnsition fyncrions for et coords on T Ore Smoch.
Equivalent aHases on X give equivalent ahlases on L. UpShot:

Proposition 5.b: If LCX isa codimension -W submanifold , then S pamally a4 gmoth  (n-k) ~manifold .
Moreover, the jadusion wmap 1:Z <= X iS5 4@ Smoocth immersion +hat's alss 4 homeomophism onte its

image- And  Composition with U induces a bpijection
lD

ismod’h maps Y "’i} - i Smooth maps Y2 X, with jmage ci}_
Definition 5-3: A smooth immersion that 18 @  homeomorphism onte s image IS an embedding.
lemma 58: if F: Y X is an embedding with image L, then £ s o supmanifld of X , and
F induces o Oiffeomopnism Y 2.
Example 5:9: The inclusisn S" < R™' is an embedding . Hene S" is a  submanifold of R"
and the Smoth  sbucrure  we defined on it Coincides with  +he  submanifold  Smookh  sbuciure.
Finding nice coordinates s hard, pub 4here's a much @Asier way bto check a Subset of X i5 @ Subman

Proposition S0 = 18 F:X Y i smov, and L€V s a regular value , then F'(q) is o submanifold of X
of codim = dwmY (dim¥ > dimX then F7'(3) is emply)

proot : Toke pe t(a) and pick loal Coods yy,.., Ym Obout G Wit y(g)=0. Since Q@ is a regular
Value, F is a Suomersion o+ p, so 3 local coods Wi, .-y An Qb p in which F is pwjedion

R"= R"® R"" —» /™

So locally near p, F7(4) is gwen by & M=o =xm ol I:’



Example S-!!:  Consider FPR™ R e hxh?  qpen DF= 2T aidx' g, pof s surjeciive P %o
Hence Yrem\iiel, ype set F'(r) s a codimensim | submanifold of R™'.

€.9. FU)=s" is a submanifod.

Most  points q.€ Y are regular values:

Theorem 502 (Sard's Theoem): For any smokh wap F: XY, the get of critical values has

measure ero in Y. More pecisely, if @-U-3Vis a chart on Y, then (Ycritical vales in u}) CV
hos  measure ero  with Tespect +o  Lebesqgue Measure on md""'v.

proof - Theorem 6.10 in Lee ( 2nd edit}n) o 2.1-12 in  Nicolaescu (seprember 208  version). D
We'll oaly use the Hllewing weaker version:

Comllary  5:13: regular values ore dense in Y . In parkiaslar, regular values exist.

Worning:  Sards Theorem SaYs nothing  Qbout  vegular points

.9 it dimX < dimY, then there are no reguiar ponts: So regular values = Y \E(X).

Definition  5.14* Submanifolds V.2 ¢X qre transverse # VPE YOZ, we wave Te¥ + Tpz = TpX .

we write Vhz.

Proposition  395: ¢ YDZ  of (odimension K and &,  then YOZ s a subman of & dimensin kel
proofz Fix  pe YOZ. There exist coomds Ui,--» Yn and  1,-.-, Ta  dbout p  such +hat Y= i 'J.'=---=9u'-°},
Z2- 1 "T‘)'"t ‘1"°}X- Consider +he map F: U = L given by Ly, ue, 20y, 20) - By ansversaliny,

4 T .

TeX = /T.‘ie '/Tot IS Surjective Se F 11 a subwersion ot p. Henee 3 coord s LTYPRE T
Gbout p st MY .., Ak T YR, Rkss Ay, XRag T R So neor p, \nt s givu\ by the vanishic\g

d ..., 0. Se VN {5 a submanitold of codimension k4. I:l
ldea: hove & mae :u — R v (ule),. -, 9 (0), 21 (o), -, wal®)).

o X X
Tp X = /TP* ® /TP'l S\uJeo\ive,

$° TN oa Submesion .



5.3. TFrobenius TImegrabilily

Fit an  n-manifold X .

TX. We cal D a distvbulion . often we can specify
\g Dp =D. By the local frame criterion for subbundies
LXe: W™

Suppose we hove D €S a rank- k Suvbundie of

£o¢ ok peEM o tinear subgpace Dp € TeM | and tawe
Vpem, 3 a neighbourhood U of p 01 whith 3 gmooth eclor fietds Xy,

D is a Smot dist® iff
D, a+ each 9 €U \we say +that D is (\ocally)  spanned by the

s.t Xilp, ..., Xelp form a basis  Por

vector fields Xy ..., Xw.

submanifold ¥ € X & called an integrul  manifold of

Suppose DEC TK is a gmoh dik™. A  ponempty , immersed
3 ot integml waniblds when given

D iF TpY =Dp VPEY. Tne mokivation for this Choprer s inves Hgating

a distecbution.

Definition S.lb: A Kk-plane distwbution D on X is & rank K subbundle of TX
linear ¢pan

Example 5.1} In (Rs, ¢ox,%7 is a 2-plane  olisbution , or < = +yd2 99> These can be

desuribed as kerdz, ker (d% - gdx) respeclively.

In general, 4 k-plane dlitibution is Qiven by +he yanising of n-k Fibrwise linearly independent 1 forms

Examples  19.1: (Distvbutions and integral  manidolds)

@ iV is a nownere -vanishing Smokh  vecisr field ena manifld M, 4hen V gpans a smooth  rank -1 dist? an M

The image OF oany integral curve  of V is thus an integral  manifld of D. TeY s spowned vy Y'(t-), where Y (te): .
{ which s V(V(l0)) by dfw & iniegral curve.

1 dim?.

2 2 .
® In R",  the vector Fields dt'seot 7 3xk  span o smooth  dist™ of rank K. The k- dimensional affine

Subspac e willel t R* are integral manifolds.
P P L)

/ 7 1
b

() ter R be e dist® en R"\50% Spanned by the unit vadial vector field
RY is a smeoth ronk - (w-)  dist? w RT\$eS.  Through each point

is an in&esml moanifold o RL.

« D .
%5, and leb RY e s orthogpnal

lomplement  bundle.  Then % € R"\%°%_ ¢he

cpnere  of rudiuws (%] arcund ©

i i

-1
- TpS" s sponned by all +he
vecters perp endictar e
(“-"‘;)p ( which P0G radially odwards

¥ on X ([ derivatve of ¥ $0), You can osk

Given a k-plane distibution D, Gnd  Gn  immersed Curve
if D s locally Ker( o,y %a-r), Hhen

that ¥ lLies in D everywhere. This s @ Syslem of h-K oDE's:
obE's o di(F) =0



These

Qare

I¢
can

k=1l,

local
the

Then the §' give comserved quantities (locally) along

Conversely
of the

IF k>

Solution

invariant under

then

Coordinates

Cuwves

Solution

gt

then

there's a  unique
then pick a  smah

on X

ond

Cuvves

the

(n-) -

local

dimensional  disk

’ 1'|' s‘l"'l y‘.‘ s-t

are

system

9',...,!’

are

any  Curves

of ODE's is

solution

in X

Coordinates

contained

wnderdetermined .

reparametrizavion of §-

transverse to DO.  Then get

%' is 0 Coodinate along

on e disc.

solwlion Curves, ond

(locally) level seks

in

curve  (modulo paramekization)

through each  point. We

The nicest  possible situation is  +hat

there exist

n-k

Uocu\ly) Conserved quankities  aloag  Solution Lanes, and a ourve  Solves  the system of ODEs if i+ lies locally

in level
Dfn 5.3 .
We

Dfn 5.10:

This

setrs

formalise

A

respects

of

Such

the

(‘u€ n\“,gem""‘) —_— (i[u'::y).

of a Hliared

Example
G)
foliared,

(I

G. 20:
it K = YXZ, then
with

the
Otlas

these

a

Notion

smooth aHas

quontities-

Sgsum [}

of

0n

de composition

slices

under

X i dim(Y) fliared by slices

local

+he  obvious

¢ oDes s Called

level sets a3

X is K- foliated

of R" into

notion

ot X2,

F: XY is a submersion,

ten X is

if

R R

slices

integrable
follows -

tyansition
n-K

)

does Mot

of equivalence

functions  have the form

locally

depend ont/*). maps  R“xipt) —~ REx 1Y

RE x Tetd . A k-foliakion on ¥

on

LY :

i an equivalence class

Kliated by  Kores :

()

() Comider the map RP5 TP zs'xs' i (ay)es (e e¥*Y)
with o€R. This induces locwal coordinates on T2 and these
induce a  foliation A
77
9x slope o
AN AN
99 direction
)
Can Swale T2 by puwple slices . IF o is irmtional , +then  each slice ( leaf)

is

X
)s

dense

( equi valent if theic union i3

in

K -foliaved).

Y30} (tawe product Chark) , Similarly it dim



Giiven a  Kk-Rliation of X, there's an induced k-plane disbibution D = <

ys 9x*7  where x' are
Coordinates on +he foliated atlas- These are the

tongent  spaces to +he  slices.

Conversety, given a Kk-plane distabution D,

it orises fom a ®k- liaktion in this way ¢ 4he ODE
System 1§ integmble.  The fliation Coordinaves

\ n-K

Yy Corcespond 4o +he local Conserved qQuantities).

Theorem  5-21 ( Frobenius 1ntegravilicy) A

k-plane distibution Qrises fom a fliation
closed under d4he Lie Bracket. 1I-¢

in dnis way ifF D is
it v,weD are vedw fields on X, then

Cu,wl €D.

Dfn B5.22: Such & distnbution is calhed inlegmble.
Example 5-23: Recall our 2-plane dist?s on R3:

*

s closed under C:]:

) € 92,3 : grises fom  the 2-foliation induced by sandard Chart on V. Can check hat

W) €2%449%,%%:  Nov closed under Llie bmcket: L[y, 3% tyd:] =233 ¢ D.

Suppose £ is o consewed quankty f:R* 2R Krowe obe sysem

(i-e- consvant in direction 2=+ 4oa and 2y).
! - Contant along all curnes kungent
‘he'\ a " ™ % *° b kzr( da = -yh-)

so  f(xy%)

;(05 Yy, "‘3)

£(o0,0, -%y) & independent of y
2 constont

Prod  of Frobenius

Bolw  Conditions arve (bca\, so it suffices 4 work in a4 small neighbourhood  of an amitAy  point pEX

Suppose D arises from a  fligtion. Then loally we have (oordinates LA LY 3"""3"-“ such  4hot

D = < 9, 3xk). Then fom our formula Hr L), D is easiy

seen s be Closed. %
Conversely , suppose O s closed under C:/]. Pk arbixmny

lowl  coords PO L S LR %
OQbout P By rcordeving

and  Shnnking  #he domain

wWe Can  cSiume that  +we et
So Mo 1L,k 3 (unique)

are  ‘tronsverse > O,
SmMooth  0i)  such tWot

vie ¥ 2 ai) %) Wes n O
J
Idea: &r a wvector spae V, ewe

every Vetror in V. may be
U and W .

subspaces U WS\ are said to be iramsversal F U+ W=V, ie.

written as a

(possivly non unique)  linear combination o vecters in

¥ NMCcYX are submaniflds  satishying ¥ p€ NAM

TeN+TpM = TeX,

tven N ond M are 5ad o pe bonsverse  submaniflds.

I0 yov Quwe 94 Gnd D, twen Otiand O gre

said o be bantwerse ¥ ot eueny point  they are tmnsversal.



Becawse D s a K-plane disbibution, Wlog we can ke 4he losr Nk cowds t',-,t" " o be

transverse to O.
Now any 9si can  therefore pe wntten as smeh.-,.s ia D + fomething ia C'M"}. T.e,
Vi T 9 t Zaijdy)
J

lies in D for some swwoth  coeffidemt Qij. T Sonve reason  these Gre  unique, perhaps to do
wvikh the fact  that sy, 8%, Dty NNE lo(aua_‘ spon  TX. Achmll“' 1 adlse think  Ehat

i dimension veasons: this 18  lhorendous novation,  butk

dim( TN = dim(D) + dim(<3el,, 3PD) — dim( DN Loy, oo, 2eY)

n " n
n K n-k

2 dim(D nlat, -, 3e™%D) =0,

so realy s 1S lkind of Wke a diccct sum  and  therefore the d position IS unique.

what  Jock said was: WloG , £ g1, ™ Y s tmnsverse to O (can emure this  holds

ot p #se'f , and hence on our whde (ood Patch after shvinking  if Nece ssany )

Dis a k-puane f[liation, ond the Vvi's are Pibrewise lin. indep- siace +he st are , So achually

D = Vi, VED. Hence fo prowe  Hhat D avises from a E-bligbion of X, it suffies to constvact

Coordinates %'y .., %%, gh, 4™ quck that Dai =i

WLOG p=o in s,k (oodinates. Our whole lon3 argument  just showed +hat Ry each i, there  exish
-K

a
unique  smoth  functions Qij such  hav v s ')si + )i:. Qi) el fies in D.

Let 6; be a locat flow of v;. DeFine F: U =»X W here W is a gsmall neighbour hood o O in R" bs

a! at
¥( LA L gy ‘J“-t) = &. ©... '§& (St o, k"‘"\ Now for  time ' in v' dicection VY i

a,
remember @ : X X,
and X has local (oords
PRI LU DR

Ne wave Do F () = vile) , Do ¥(9') = 9,i () ) So it +oMES one bOSIS O gnother D an  isoMorphism

ot pzo- S»  DoF i invertible. BY inverse funchor Tam, F defines @ paramebiation  near p.

So now we've defined our wordindtes , gnd what's 1efl s to Show that il =\,

ni
S“W‘M tha @: Commute  with eath oter:  Then We have

ai+t ”

Pni * X é:lon.o 6‘ e...0 Qk

- Cou)

ST TR TS S DR Shall 2R



. LY
So s suffient o prwe  that  §i Commure . By example swet 3, this reduces to cheching that
E N, V)] =0 V "Ij .
9030 2aie . 94 L, Wim o
We  have Cwi, vyl = zl(? i )atl + 'ﬁ(a.m 3 %t -~ aje Y o )

/

[ ¥ g 9 f i} 90.‘]

We're assuming that [vLVvj] €D, bur v see  that U's @ \inedr  (ombination of Oti'S  which are

frmnsverse ™ D-  Hence Cvi, V)] must  be 2em-

]

Theorem 5.24  ( Fooenius  Tniegubility Rlrernale version)

A distwbution D arises fem o Poliakion iff  the annihilatee ¢ D

(D) := ‘i o€ O¥(X) : o (Vi) Ne) T O \whenever all  vj ED}

iS Closed under d .

E-g- 9:< 9%, %7 has I(®) = QU(R?) Mdx . 5o @ o€ 1(D), then o=[(rdx L some B.  Thus
da = dprdx € (D). s D ares fem o foliavion

p= { 2x+ydr M7 os T(D) = A7 (R3) A (da - yax) which 1S not closed Under d: eg. d(dx-ydx) € (o).
I¢ % wee, inen  d(dx -ydx) n( da-4dx) =o  ( we'd be avle t wite d(dv-ydx) =oA(d2 -ydx)
for seme & Since d(dr -ydx) € I(D) @yt

d(dr -gd‘i) aldr - ‘bd")
(- dy adx) A (da -ydax)
S - dy adx Ad3}

: dxadyadr 3o

S50 D does not ase Fom a Foliation.



Proof  of Alternate  Version

Both  (onditions are local , §o we

) can  work loally near p-  Then 3  vector Fields W,.--,Vk hear p

such that D = <v,..., VKO Simi\nr\a there exist n-¥w 1-forms oy, ) Xn-x such that

D = Keru.0---0 keroa_x.

Then IM) = O ()AL +. + 2 (DN Ak

T(0) is closed under 4 #€ Vi dw; € T(D). This lholds Wk ddi( Vi, Ne) = 0 N k.
Cloim : Tor oany |-frm & ond vedor Feds S.T,

du(st) = 1y d(ux) - 1y d(is«) - reem @

Applying  this 1o doli(‘lc,‘lm), we Qet

axi (Ve, um) = tue d008) = Vum Altee %)= Trvg, v
\~ —
0 SME“u:yM:D =0 s'.zc;':(:b
=0 - ° = T tvg,vm) %i
= - Yoy ,umd i

Hence 3(0) is Cosed under D & LHS TO N, 4, m
S RW o Wi, Um
& Cvg,vm) € Kker(a3) Y&
<& C(ve,vm) €D.
&> D oarises fom & foliahon by Fusk version of  Frobenius

So we just need to prve the Claim-  We have

g0l IS just @& Puncvien

—~
1s d(v%) = L (2re)
Pags, X 4 v Ls¥ (b-, Leibniz)
And f.g# = 1sde + d(ago) by Cavan's magic fumula . Putking everything together,

1gd (17a) = ey + Lrilsde + A d(sa)

do((s,ﬂ

5 du(ST) = 15d(27%) - 17 d(2®) - g

as  requiced - This  completes +he proof.

See papef notes. for in depth  caleulation.



€]l LIE GROUPS AND LIE ALGEBRAS

6.l Lie Geoups

Dfn G.l : A Lie Gwup is a manild G equipped with a  group sbucture  quch +hat mulkipli cavion
m: GXG—=> G and inversion { G 2 G are Smooth

EXxomple 6:2 =  GL(mIR)

DFn  6-3: an  embedded Lie Subgroup of @ Lie goup G is a subgoup H thats  alse A submanifld:
The restnctions  of grup  Operations fom G+ W are  Smoh, SO H inherits a4 Lit goup Sbucure

Example G:4:  SL(nR) , O(n), So(n) Ore embeded  Lie Subgeups ot GL(n,R). Glin @), Uln), Swu(n)
are ewoedded  lie Subgoups  of GL( 2 R).

Dfn 6.5: Given a Lic goup G, ond 9€G, we have maps G > G

Lg (h) = gh Lefd - +ranslation
Rg (h) = hg right -translation [ bY 9
Cg(h) = ghg™ Conjugation
These dre  diffeomorphisms :  +he inverses are Lo, Rg-', Cgq71,

DPfn 6.b: A demsor T 6n G is left -invaviant ¢ LS*'I =T V9gE€EG. Similorl, foc  right -invariant and

(onjugation - invarian. T is called bi -invariant it th  lefd - invariant and right invarian.

bi -invariant 3 conjugation -i{avariant

lemma 63: % any WEG, The map

2“ left - invariant tensors } g t;‘;‘:"(“%;‘ °c}
” "
°n G of type (pi%)

given by  evaluation o h is a bijection.  Similarly for right -invariant.
P[-. it T is 1kt -invariant, then V9EG  we have
Ty = ( '-9“")* Th = ( th"y'\'h (*) need Ao go oveh

So the map T Th s injective.  Conversely, given Tn ot h, the formula () defines
exensisn of T, to G

a \eft- invariant

Conllary G.8: Pny Lie goup G is  parllelisable (has  bivial tangent bundle).

pf: pick a basis for  TeG - The \efd -invariant vettw Helds ossociated 4o this basis fom o Gbrewise basis for
T6,  tnvialising it- D



Example 6.9: for even n»2, S" does not admit a Lie group staucture (1S™ is nonbivial). On +he

oter hand, S* is panlielicable, as s> is diffeomorphic 4o SU(2) *

suc2) - i (-“ f) wldwl? 1) = s3e et
N w

6.2. Lie Algebras

Fix a Lie group G

Dfn cio: +the Lie Algebra of G, denoted Y,is Tea

Example 6-l: fc Gz GL(Nn,R), we wave 9 = je(n,ﬂ\)n Mot oo (R)

Recal a Lie Mgebm is avechr space  equipped with an Qliernating  bilinear bracket which Sotisfies the  Jacbi identity-
Proposition  €A2¢ o caries a natwal  bracket operation, mMaking i ino a  Lie Algebra.

poof: To each element S € % ,khere is an ossociated  \eft- invariont vecw fied Uy.

We cloim +nar the  Lie  bocket of 4wo  left- javaviant  vector Fields i3 (eft -invariant,
So we con define [5,v] by

This  inherits  the  Lie Algebra properties  Prom the Lie bracker of vethr  [elds.
T+ remoins ® prove the claim:  Well, for al 5N ond 9€eG, we hove

Ls* (6, W) = [ Ls*‘es, Ly'es] by diffeamorpnism invariane of (-]
= [ & , €] sine 5,0y ore le -invariant.
o [, 2] s ekt -invoriant.

Proposition €13 : R all §€ 9, the vethr field i complete.
prwf= Congider ODE ¥ o= es( f) with Y(o) = ¢
This has & Solution 98  (-€€) for some small €vo. This Cune saviskies

¥(s+t) = Y(s)¥(t) for small st

d
( Bon sides satisfy a =0y, and st ar VOs), Heme +hey're  equal by uniqueness of solutions ).

N
Now exiend ¥ 4 R by defining I(t) - Y( t/N) do0  N>>0. Now define the global  flow ¢ o
l, bg
§%C) = 9¥(®



We'll  write ds for the  Flow of L.

Dfn G lu:  The exponential map exp: ¥ — G is defined by ewp(S) = 6;(83.

lemma 6:.15: We could have  used right {avariant  vector Fields fnsleacd and we'd get the same exp.

p roof: let Y3  be the inregml wure of L5 Sstarking ab €. So exp($) = Yﬁ('). T+ sutfices 4o show +hat

Xs is an iniegral  curve of +he right invariant  vectr Field Yy . This  hods Since ¥Vt we have

. 4 . d
4 Yi(e) - dsl,,, Yg (s+t) Vel) = a Vs (+)
Els:o Yﬁ(s) V?“’) a = d'ds ls“ 'Yi(s-\-ﬂ
'U‘v,m)t :_’ ve9) 4.0 i ;‘l'" T (V5 (0 = fs\,:, Vg ($) Y5 ()
: (Ry‘({)\* ‘5((5:’(5,9)“:“ . .’_g\’_ translating by right Yo k)
= (Ryy )y €4 (§(ose) ry (¥309)

= R ¢ (*)).; L (e)
T (Reyl9)y rqce)
z re(vle),

) € le):§=vqle)

Lemma 6.16: exp is smooth

pf:  Consider the vethr Feld V on  JXG  given by v(5,9) = (o, £5(9)). This hasa  smooth local
Plow & , which preserves  the slices ISYXG. On fhis  slice  it's the Fow of {g. So

ew(S) = pro(8'(5.0)
Which is smooth.

[

! !
Example C.13: Fr A € 92 (mR), define e by T+At 7 AT g ARl

This  converges absolutely , wniforml on Compact sets. Consider ¥(t):= eu' This  satisfies
9 9 P

""(‘) = A+ tA® + 7_L|_t‘As +...

= At - A
] i
Hente ¥ is 4he integml cure VA aeva) L, (vw)

Thus  exp(A) = ¥(1) = e®.

Warning! ' A+ 0 € of , +he derivative  Dyoxp : 4= o 5 idy , So exp s a loal diffcomorphism

near 0.  Bul exp vneed not be 9lobally injeCiive or  surjeciive. €E9. fo SL(2,R) its  neither:

d
lemma ©-18: o 5,4 € ‘j we have (35,4) - d—tlh. (cexpus);) U}

d .
?mf-. Wwe have Csm) at {:od!u uso 6; o §: o @: (e

= dili:o du lu:e exp(ts) CXP(“".) exp(-ts)

z }t lvm (c tvp(es))* " D

ComWlony 6N 3, ABC ﬂl(.,lk\, CA,B) - pAB - BA.

peosf - By previous \emwa, (a®) = (etf Be'u)' (o). I:’



1F S € o sansy  CS,m)=0, then  exp (54n) = exp(4) exp(n).

Coro\\ans ©.20:
exp (3) and exp(N)  Commute-

So in  particulor,

proof: Define (X = exp (+5)explen). /’

exples) g exp(dn) | + exp(+3) exelen)y

( L ew(fi)) * ( Rexp(un)« 5

We wave Y (4)

(C e.w(—“thk S = exp( ‘*’VL) s(exv@ﬁ))—l

 expltg) exp(en) - (§' 40) .
> cxp(fg)e*p(i’r\)ﬁlf ep(t ) exp(tq) axp(-t) %(QXP(‘“‘))

Where S' = ( Cexp(-tvt))#s

We Claim S‘ = S V*, So ‘f(ﬂ = -Qq,.m (YU") . Then ¥ Solves +he ODE defining exp ((S*'l))
oand satisfies  Y(0) =€ o we're done.

At E=zo we have %' = 5. Bw alse

d
dd_t gl = d—h‘hto ( Cg_yp(-(t*\)‘))* g

- (Cexpt-sm) )+ 145

Cs,n] =o0-

[}

0 by our asSumption +hat

Warning' Foc  generat 5.1, 5 not hue 4nar  expl % 4n) = exp( €) exp(n).

6-3 Lie Grwup Actions

Fix @ Llie goup G, and & manifold X

Debinition G.21: An action 9: GxX >X of G on X s Smooth if the wap T i3 SMOoH.

Examples 6-22:
() Pckion of G (o embedded subgoaps of G) on & by lefi/right -hansiation o  (onjugation.

(  @&L(n,R) 0ading on R" o RP"'.
(@  olm lx subgoups & OM)  oding on ™.

Definitisn 6.23: A Smodth Qction o G on  wdor space N by linear mMaps s O  Smocdh representation of G.

This s she Same thing as G Lie grup hemomophism P G = GL(v).

Exampe G.24: The adjost representation s dhe octim of G on o by conjugation:

Mdg (§) == (Cq)s %
The dual epresentation & +he condjoint-

AN acions and wrpresenjakons  are  Smooth fomn  now on



Definition 6.26: The (nFinitesimal oaction of S € onXEX

€ -u:= D(ent)o. (slo) S ( Q\(P({i)l)‘(°) € T X

Example 6.26: The inFinitesimal adjoint attion of % on 4 is (Ad ey o43) 1)(9 = Cg: 1)

6-4 Quotients and Homogeneous spaces

I a  Lie group G oacts on a wanifld X , then we have a quotient spate X 6 ad a
(Ombinuous projection X *G.  somefimes  4his Quotient  is nice g  R"\To}/gp¢ ¥ mree"?,
bu} sometimes its  hocrble!

2.0 lk“/G(_(,,,m) = +wo ponts with a non - hausdor ff ‘wpolagy

Theorem  6-2%  ( Lee Theorem 2!.10)

Il ‘the G adion is free and proper, then e s Q bpolog’.ml manifld of dimension dimX -dim6,
and it has O umque Smooth shruchure  that  wakes n: X »¥e g Subwmersion.

Definition ©.28 - The Ocvion is proper if +the Wwap Gxx = XX ; (9,%) = (% 93) is prper
( preimages of  compact sets is compact). This is equivalenn (Llee prop 21:5) o the following:

it (9:) and (%) are sequenes in G and X gach ¢hat () and (3;%) Comwerge, then
(9) hasa (onvergent  Subsequence.

Definition  6.29: A homogeneous space for G is a manifold X camying O transive G- adion-

A prncipal Womogeneous space i a ywanifold with @ transiive  free  Oction, Semehtimes  also called
a G- torsor.

IF X is a G-4orser, fhon  for any X €X, the obit map G — X , 9r>9% is a diffeomorphism . So
X looks like a (opy of & bud with no dishinguished identity  Qlemen.

n So(n)
Exomples  €-30: (1) S™ is a womoegeneous space  for Soln) . TIn fack, ibs " goln-.
() IF Wis an embedded Lie subgroue of &, then he vight /left hanslation acHon oF Hoen G 13
prorer, and i obviowly free.  So %I s naturally 4  Smooth  Mmanifold-  The  |eft ~Lransiation

action  of G descends to MW, making SN jan a homogeneous  space. (In fact, eveny homogeneous
gpace  arises in  Inis  way)

(i) The space F(V) of odered bases in V  Caries a lefr adion of GL(V) , making  F(V) iaka GL(V) —tocsor
There is alse a right action of GL(WR), \where wn= dim(V),  given by :
¥ €, .., en i a bosis GV, Gnd A€ GLIMR), yhen (e, en) A = ¢ (B €n)  defines

basis Cuyeees e

a new

This actien is alss free and hansitive. So F(V) is a  GL(MR)  tosor  GCHAG o the  right.

Recall:) action ofF G on X is free it ¥ x€X i€ gx =Wx then 9g=h.



@ PRINCIPAL BUNDLES AND CONNECTIONS

31 Conmections by Hand

FiX a vectw bundle T E 8  coyered by triviakisations 6« in the wwal way , € W3 ronk ¢

Given a section s, under Qo it becomes an WR* - vaiwed function Voa. The naive derivative s dvg, Gn

IK‘ - volued 1 -form. Under o differeme  trivialisation ¢ p, V& becomes N P SMVu. let's lake Yhe naive
derivative of ¥his and Jhen pass the result  back o ¥ne Qo triviavisavion:

9pd' dvp = 93" dlapava)
® 9pa' GpadVe 4 Spd' d(3pa)Va
: dvg * qu"d(gpd\w
k/—N-\J

not Necessarily O.

So ahe cesult  is  triviaiisation - dependent Vo the oction of e 91(“.\1\)- valued 1 -form on Va-

Elaborate: let s:B->€ ve a section, which localy e can 4hink about as s: Wa —‘Elqd.
We tave a trvialisavion @« * T (Us) = U ¥R* . Then

§d°5 Ua = U« xR*:

P\ /(P: V$)  where \4; ¢ RrF
s b

%e Ep
W - . v = ¢ C .
¢ con +hen define a fundion Vo : B > R*;  \Walp) = Vg , which is obviously dependent on choice of -

Notice  that £or o different trivialisation  pe Up , iF §P°==P'—’(|»,V§‘s) , Hhen  since
bp“;u-': (v.8) — (p. 3;«(?35) .

(pV5)e Bpost) = Fpedoduos®) = &peda™ (0,94") = (p, 9pulOVs)
> \ls's : Q(N(P)\'g“- S Np ot JpaVa

In Some sense nis S G Canomical  way 4o 4ura @ Section into Something  we can take +he derivative
of. The (naie) way to do #his  would be 4o just xake dva ( we haow Va: M2 R, ond

We Whnow \Wow 4o sake d of fPunctions like twis).

Tor +his  derivadive  to be  brviakisation independent,  we really  womt phat  dVp  and dve are
related by ine  bansition fundckions : dvp = 9padVa.  Bur 4me OGbwe  gays  nat dnis iS
not  always  +he  case. So taking  the  derivative like #nis is  nov well  deFined.




™ really &4 is the collection of these 4 -foms
Definition 3.1 (preliminam version) A Comnection oA

frivialisation parch We CB  Such +hat

Yhat behave on overlaps.
on E is a o}t (ks R) - valued |-fom Ax 0n each
6n overlops

ha = Sp:dgpx + 9[50(-'A';3p°(

ot
The Covariant derivatrive of 0 section S with respect to O is the €-valwed t1-form d S  defined

locally  under du by dvg t PoVa.

Consider 4he local 4rivialisation §o: (M) lcE) = uax XR® (realy evey S EL canbe vnougnt o as a vetsor

0+ o powt). So how s d*s an C-valued e fym?  T's defined under dx as dva *AaVd, \which
pulls backh 40 give a one fom (Q«)*( dva 1F\qu\) (ll’\“ -volued 1-form 4o an E -volued 4- form).

Let's onalyse dva F AaVa.

Now, Ve s an MRK-valued funckion, 1-e. Va:B 2 RE. gy dva s
an R*- valwed 1 -fom

(coefficients are 1 IR"l or rather  maps L2 R%).

What  we really need ‘o convince
ourselves of however is that A« Ve s an R* - valued

1 -fom.

Now Aa s a gQ(k,R\ -valued 1 -form, and So locally w was  coeflicients given by wmaps B = 4t(nR)
(5o ymabies olependent Smodthly  on pes\.
Say Aa : Z Midx'. qnen  Aalva) = Z M(va)ax'

’ where we weon o pe Gl = z ML \QK\‘G(Y‘) d"‘.
Mence AaVa is an R¥- valued <1 -form

So 4Wis Ol makes sense ... Pretty wuch. The  cowdition alove

requices +hat A«  behaves micely (ageees)
on oveilaps.  Bub of Course, ihis agreement i under

e oing maps- Passing 4{o the trivialisa%ion,  avis says
%ot dvp + PpVp : 9pa (dvg +Rave)  ne men par

Says vhot 4his  (ondition {S exacly (whar we need:

This is consistent on  overlaps:

gr,u -1 (dvp + Aavp) H SP‘~| d(deVu\ + 9?.:'«“99[5&““

d(va) + Spd" (dgpu)va + 9&:‘ Fp 9 po Ve
Ips y
Ru(\lo\\

We soy S is  orxontal / CovarianHy  (onstant if d*s =0

Example 3:2: syppose E Spits as FOF' Fo some runk -€ subbundle F- e can cover E by trivialisatiens G
in which +he spliting becomes the odinany splitting in R : R: - R¥® p'-C

Given a  (ovnedion A on E, we con

define a (onnection on  F by yaking +he dop lePt QX @  submatax

ot eoth Ax restidiing ghe 1 -forms).

o
The covariant derwa¥ive of o Section S OF F i given by 4guing d s in E and pmjecting onte ¥ qlong F'-
In partiowar, ¥ t:xe> R is an embedding, Wen €= TR® has & canoncal 4riviolirakion $a and
hence @ canonical  comnection  with Ao 0.

The spiitting €= TX® TX" fhen induces O (onnection 0n TX.



Definition 33 : Twe frame bunde F(E) of E s the space of ordered bases in each Fibre. T.e

He) = Uy, xv(m")/ where (bela, v uve) ~ (bEUp, Ipal® Vi, o) 3pu hve)
~

This has a  projection T FCE) B . T4 caries a right Gal.(hxlk)-ad'wﬂ, Making tveny fibre “v-‘(")

into @ principal homogeneous  space- N section of FCE) over W is a map f:W = F(E) gcuch +hat

1'1';0(’- = du.

The #rome bundle has o hatural right acHon  of GL(KM) which s given by an ordered change of basis, which

iS free ond banshve. Since it AUs  on the right, it doesn't iaterfere  with e gluing map ~°

(VoyeesWR) & (g‘“”)m,...,gba(r)vk)
ond (vim, e VR M) {(gr,.(v.\n,..., (gpq(v\w\M\ for 0 change of basis mabrix M

Nore : sections of F(E) over U Comespond to  trwialisalions of € over U,

A section of F(E) is an assignment of bases in each fibve in Some smooth  way dhat agrees on <+he

overlaps. So really locally 4wis IS @ w0y of wetng down maps — R* on each chart W,

So over W, for eath SEE, we can wrile the point QS Some Vector in +erms  of our Chosen basis,

which gives a  vie R* . Hence we con identify (locally), Rvey 3€E Vg ER*, ina smooth way

Lot Sa: "K€) be +he  seckion of F(E) Cotresponding o e rivialisavin %« o€ (@.u“d)

We get for each o a  diffeormorphism o - T () > Wax GiLls RY ?.(b\)/?_’l-——i u;.g)
apply a change € Uy MebiX

geeu.(n,m) is invertible, Ocking on +he right > diffeomovphism is well defined. ot "basis.

Take a connecrwn ok o €. For eadh of we Can buid a jl(k:\?s\-vulued 1-fn  on Uax GILCK,R)

os follows:
( VE Tyua, 9-% €Tg GIL(K:‘R)) — ;‘ds-l Aa(\l)@%
Conjugate by 9"
(i-e. 5"Ai(v\5)
Pulling back by é.,t gives a gQ(h,R)-Valued I ~form on e (Ua).

Let's  think Qbout how we define 4 -forms. If we want it be defined o0 Ua ¥ GLLKR) , we wonk a wap

Ha  tokes vector fields t maps U gt(k,lk) ( tssentialy coeffi cients of 4-form are gaps U™ 9l(¥/R)

Equivalently, we can  define how We L-form ( when evawated % a poim) ack  on  tangem  veci(s

at  Haad point,  under the assumphon  that ik dependence i Smooth.

T
Let 5-§eT36LCh.lR). For 9c0uL(l~m, 9 s o mabix, Gnd we can identify GLLLRY ~ R 39 cee thow
45 € Te6UKM) i a watix te ( rovce Wi we dodt have b weite -3, we could just wrive S

bub  for oar purposes we're  mahing use of it).

(v, 9-5) —» Ads-n Av(V) +€ give! uS  syme+hing in qf(l'\lfm




Prop -%: These local (onstuctions Ogree on overlaps, and define a g (kR) - valued 1 -form S on F(E) Sabisfying
- (%) =3 Veewe), %€ ol (kR
p=(point, basis) matrix

. K*,’A T Mg H fe v g EGLIWRY

Conversely, any oL (K, B -valued 1 -form A on F(E) sansfytng 4w  two conditions defines a  (omedion oa T .
Guording o Dfn 3.1, wa Aa = §4 .

Defimition 3:5: A comedion o0 E is a 9t (k) -valued 1 -form on F(E) gatishying +nese ftwe conditions.

1.2. Principal Bundles
Fix a Lie gow G
Defintion 3-6: A (principal) G - bundle over a manifold B is a wmanifld P equipped  with

WONt inis to Cowmmure :
* M smooth  Surjection T:P 8

of
g —=
* M colection of open sers Ua covering B, and for each & a diffeomorphism A >
w
J’ ™
. o)
@d . W (Ua) = Uy X6 so each fibre is a copy of Gn. Wy

Such that: 1) Pf.°§¢ =om (restricted + 7' (ua),

2 bp ot (b9) 2 b, ‘5{““"9) fo some smosth  maps  9pa ° Ug nup = G.

P is 4otal space, B is base, P« are trivialsations, gpx Gve t@nsikon funchions) etc

Loks of Concepts cOrny oec from vectr bundles; -3 pullbacks, sections,  Conshuckion bu gluing.

Each triviali sation da gves a section b+ &, (b, €), over GUa. Conversely, a section S over W
-\

defines a 4trivialisation over W via 3 (b9) = s(k)g

Here  \we're using rigiw G - action on P

A drivialisation Jg: T'(U8) S Ua XxG. |8 s is o secion BP, hen L (big)e Ux X6, we
can get an  element of ' (W) by leding sact on b (s €P), and then Waving g €6 ack on it
We need 4o 4hink a lite about why  inis is o diffeomopuism. FioY,  is this  even  well - defined?

well yeah. A section 3 is such ¢har  WosS(b)= b, and o for some sb) € P, You can always
recover 4he original point b bycomposing With @ . bow WRHing g ¢t on s®), by Example  6.30 i),

this action s free and {mnsitive (1 thiak 2) which Means twhat  s(blg= sb)w & 9:h, S that we can
need ¢€o check
trvialisaden

Conaitiny

recover by 4ihis  uniqueness-  OF Course, al o this s smooh, S0 P is a diffeomorphism.

¥ P> B is a principal G bundle, then P has a rigm adion,  defined ia brivialisations:
i-e. it Daled = (29, sen pw:z (b,9%)  This gives a  Corespondence  behween  sections of P
and trivialisations
i d — S defined by S(V) = ¢"(\o.g)}
l/\

is — @ getined by & (b9 : s(ﬂg.g



Example #3 (i) if € isa vank- k vecror bundie over B, +then F(E) 18 @ principal  GL (%1R) -bundle
(action  (omesponds 4o change in basis)
(i) B8x&a — B is ne +rivial G- bundle

() A G-bundle ower a puok s Just a G- torser

Warning! A rank- R vectw  bundie IS not the sawme as &  principal  IR*- bundle.

For 0 vector bundle, iwe trivialisations are glued along  iniersections via somorphisms ©oF  vectr
spaces ( elements of GIL(KR)) . Bw e q prindipal R*- bundie, ine gluing s done by elements
of R* ( transiations).

Remember @ bransidion funcions of a  vecor bundie- pa * UsOrup = GL( M) not the same!
bansition funchions of a R - bundle Ipa : UsOup > G= mRE.

[ identify p~ py ¥V 9EG.
The right G -acion on a G -bundle P is free and erper, ond P/ s B.
Conversely, if P is a manitold, carrging @ free and proper rignt  Gi-adkion,  then the quovient wmap
n: P> e gives a prindpal G- bundle (W is o submersion, So has local  Sedkions , Gnd  they
induce Lrivialisavions via the right G -ackion).
Example 33 ° Recall ¥we Hopf wap H: Szn'" = CP" . The sphere Su“C c™ carries a  free
U(D  action  which i5 also poper  Since  UCD \s (ompat-  The action iS by Scalar  mumiglication and
twe  Quotienr map is H. Hence H is a principal w(l)  bundle.

Definition 39 = IF PG g a G-bundle and p:G - GLIV) isa representation of G, +hen the asSocialed
vecor  bundle s
PxV .
PxeV = /(Pg’v).,,(p'f(s)v) gives o v.b- over B

T8 P is iyvivialised over Ua with  Lmnsition funcions Gpu,  then PxaV is  trivialised over the same
We  with  +ransition  functions  p( 9pa).

Note #nat Jpu - UaNUp =G , so pogpy : UeDUp = GLIV), and 4nis is enough 1o define da wvectr bundle.

Example #.lo
i) if P=FE), and P:G.L( KR) > GL(KM) is e identity, bhen 4he associated v.b- s B iselt.

Then Gz GL( \‘nf’\\ whith ads as @ change of bass on 4he ri5h+ - We can think  of g pont in F(c) as
(o, vy 0) , then  pg = (b, '3, V") | For O vecr wE€R: hen, we go iwe denwfication
(b, 0y, ..., v“g,w) A ( b,V v gw) ;) whith encodes  +he exatt Same data as E-

W iF P FE), o P is ¥he dual cepresentalon (ivargpose inverse) YWen the ossciated Vb is EV.
Similarly  we can get  densor powers of E, EY.

w) it P: & = GL(=%) is ihe adjoint  representation (9(5\'5 = 3%9'), +then ine associated \-b is
called the adjoinr  bundie  adP-
T¢ p:=F(E), wmen od(P): End(E) = EYOE



3.3 (onnections
let U P28 be a G-bundle

Definition *:11: A (omnection on P is a oA-valued |-form S onrP satisfying

. plp8) =% * ,5‘4‘ = Adgn A
TP R

9 : Pap,
[2ad )

If  Ba is a rivialisation of P corresponding v a seclion Sx, +then
Ao == st A

is caled the local Connectivn 1 - form.
d’ 1S a l-form oa P, aqnd sx: B-=2P, So ihat s'ot s a l-foem on B-

NB: Recall 4nat p-S for pEP and SE€0f means +he infinitesimal ackion of §egon Parp (dén 6.25)
This is 4he most natural  Way to get a tongent vecr € TpP from one 3 € TeG:d.
- -\
lemma 3-12: O0n overlops, Ao = 9pa dJpa t Adg,,;'AP

et pe UaNUp.  Then A

Proposition  #13:  Every prindpal  bundle (und hence  evewy VeGor bundle by

considering  frame bundles)
admits @  coanecCtion.

poof:  We (Can coer P by trivialisations $a  over Us, ond define @  Connection Ay o0 1'(Ua)
by tahing Ax= 0

Ay P Basically build up CA

using local Comnections
ok sorisfy overlap
Conditions

L A\

B
' Wo
Let iP“} be a partition of unity sub to tnis cover . Then o = E(P““-)*“ defines 4  connecion on P:

® Fr peP, $€9 we have 0"(?-5) : E P ow(p) Sy (9-5)

=0 outnide . € on Un
Ua
2 pueT Re'ohs
= I puem Adg- ok
o

Z r«ﬂ'mi =5,

* Fx §€G, we have Ka*a\-

"

T Adgt T Pacm vhu
H Adsﬂd._



Proposition % \4: The space of all  Conmections o P js a tforser for the spae of adP -valued 4 . forms on B.
= Homogeneous principal space:= space with & transitive G -Action
. [ ]
pf: Fix a veference  Coanecion h° on P . Now 1t A be any other conmection . Consider  +he  of - valued
1-fims Aa- Ag° on Uu C B.  On overlaps, we have

Au - Ax* = Pdgy, (Ap- Ap?)

So they glue together o gve On  adP- valued 1 -form.  Conversely,  if D is an odP - valued 1 fom,

dhen  the o - valued 4 - foms A’ *+ D4 define & (onnecion Ot.  These fwo Conshuctions are inverse.

]

¢ ™ for werd, nov dumall

Definition 3.15: Fr pe P, the vertical Subspace @t p s '\':P = Ker DpW = TPreyy = P

A horizontal  subspace IS Gny (omplementany  Subspace.

A horizontal  distribution i8S &  distibution H on P which is a hortotal  Subspace Qar eveny point.

or

Given G connettion A on P, H:= herdk is @  horizontal  distibution

ronk-vullity 3 dum (Ker ) =dim(P) - dim(ef) = dim(P) - dim(17P)

Blss kerANT P =6  since ¢ p-5  isin kerck, tnen

A(e-5)=0  puw A(p5):-3%

Because OoF is right equivariant, His  right -invaviant, ie. (Re)# H =H-
Conversely, given G right  jnvariont  horizonta) distribution H, 3 o unique  Connection A with herdA=H.

3 v
Pny veckr can be  decomposed Uniquely a3 p-S t h . Then define oV - €. Asection s of Pis
horizontal  iFF its tangent  to the horiaontal distabution, ie. s'A o

Example  7.lb
() Consider  4he proecion T: R K (9 = (%) ag a  (triviel) principle R -bundle.  The  distibubions
{3, N7 and < 2% Y93, 947 Qre  horizontal ( dorid comain 'Bt\, ond are R -invoviant  (invariant

under franslarion in % directien). So they each define o  cennecttion on ¢he bundle

Cose 1: O : ker €2.,29> = da (A= 0)
case 2: OF = ker< 32 43+, = da- ydx (A= -yd~)

(i) Recall +me Hopf bundie H: §*' — cP"
c"l\bl
Intt nt! . H
View Tp S * Os & subspace of c™' - Conscder Te S™ai- T,S"‘.‘ This  defines a  W(D -invariant

horitontal  distribution, hence & connection.

Reeal o section of E is horizontal iff CovarianHy  (Constant - Can Check +hat G  Connection on E induces

A  Toriontal  dishuren on E sk 0 sechion IS honrontal in the old sense ( covarianHy constant ) (€€
its  tangent fo this dlistibution.  Recall alss that o ecion of F(E) is a K-tuple of sections Sty Sk
of E. Then § is horizontal iff  ihe Si are horizontal.



USing 4he horizontal distibudon | we can define pacahiel tmnsport on P->B or E->B as on Example Sheet 3 Q3.

3-4. Curvature
Fix & principa) G -bundle P> B with a connection 6F.
Definition 3-03: A s Plav iF  the horizontal distribution  is integrable ( arises from o foliation).

Proposilion  3:18:  the Jfollowing are equivalent

() A is par P
U‘) P is foliated by local honvontal sections
i) P has a horizontal sedion locally over eath point in 8. k
U¥) P can be covered by brivialisatiens d;a such ihat at Ax are 0 T~
¢ ®

Prwe'. = (l'\\

) just  spells owt  what i+ weany for the horizenwal  dishibution 4o arise from a foliaven

) = (W) s obvious

(i) = (WY Given p€P, by Gi) 3 horirenval  section § over W 27(p). Then 4he Fight +mnslates of S
foliate P over W
(W & (W) : Given a bivialisation 6« ; dhe Corresponding  Section S is  hodrontal i Sodh =0

3
Ax

o\’(g 20 &> gt A =0

Curvature is +he obstuckion 4o  flawness.
wrly $
Definivion: The  turvature ‘oc of & is the 9 - valued 2 -form dug * Axvy

dack + L [Aret] @ duy =0

Notation: For g-valued p,q foms <= iii;ﬂﬂ'i T=§' 1,0Ti, we write (eAt) pof

Contl: Z (%] @ (60 v T;)
l])

PL

Waring: Ceatd = (=) TESpuq

f A s a g4-valued L-fm, then

(A, AT - T ACxy), ACX)]
2 ( (X)), A(X2)]

[ \A "\A] ( y|,X7.)

o

n(o)
( Tas], equl'v; Ueat) (X,, . Xn)z 2 (_051 ( «¢( Xr(l)r..’Xr(P)) L (xr(pn), ., Xe(,-&ﬂ)}



Theorem 3.20: A is v = § =0

proof: we claim I«(wwh 0 it (wLe&) v is vertical . Then by Frobenius, oA s Plar b
dA € 1(kerA) & dot (VW) =0V hoerizental  V,w:

Tdea: et Y = v vz pe some fangent vetsr ( or  pecker field If you G¥R) with Ny verkical and
V2 hornvontdl. (e wam o how  wat the  yrvaturt map ¢ o oipf A is plar (disY® arses

fom o folistim- Wwe can chech  some cases:

V, M) . where vemal —> dbowt  what ¥)
'e'( ] wher v dm (arc w w S Yhese (e all Cases by \inearty of e

$Cv,w: whee vand w  are both  hedwntal

And se f we hoaw  that  d(uwl <0 ¥ v vemal, ten 4 see dnat B 0 we Jut Wawe o ceeck the

Condikion  just A VW  poqarontdl. This 9iu¢: LS Oow equi valence.

Suppose  We wont # (v,w)=zo. Then says dA(v,w) ¢ i CANAI(v,wW) =0. Now,

1CAnA) (vw = (AW, AMW], bt wien w is horitomsal . » Alwlzo  (wé Ker A), and hence this

’

s eguivalent to dA(vw) =o.

< LW =0 ¥ heivental  yw
Since (AAA]  vanishes on  horitontal  \edon)

= (b\g claim) #.(V:W\ =0 ‘(V,w‘

Tt vemains 4o prwe #he claim, ss lRE V be  the  verhical vectwr Field  v(p) =p- % (% Fived)
We wont 4o prve ‘w‘}’b- We ‘wave

Wi+ wdok  t [AY),0k]

1vd* + C%,oﬂ-]

- v th"

™

wh

&
“

So s left 4o shew
We wave  C3,0A] 2 &lie Adagin ok Rg ok = Adg-ct.
* d e \Rm(-«sﬁ%‘f.

= - Ayt = d% =0

< -‘7,vd,¢)4.



brivialisation Oa , We

Given o  section Sk Coresponding 4o Q wite Fo  fu Sq # Then Fy is
0 d-valued 2 -form on Un.
Proposition  3:21:  These local expressions  glue togesher to give on  adP - valued  2-fom on B.
proof:  On overiaps we have Sp = Su sf-";‘ ond  we want to show Fp = Ad,‘w Fa.
let s=S«, §-= SP;‘. Foc Ony wvechr VE Tb(uﬂm‘ﬁ\ ,
0 Gy - Rg)e (s#V)  is  vevsical.
—~— =
S~
Sj Easier 4o work at a fixed bEUxOUM
and say
I R;mﬂ' LLPTORIE £
/_T\ .

(

|

[

=V
b
Sinee.
Sine  §  ommihilaes vertical vectors , we get (s 4 = s*Re % Rg“""’ Ad5~‘c74'
Y{b Y Adg"j’
!
Adg-‘ Fu

Example 1-22: For our 4wo Connections 0n our trvial R - bundle T: B> - R, we have
£F= 0 (A=0)
Fe dundy (A =-yax)
Notation

\
3 CAah Ag)(v,W) wedge poachel

N {CAu(V), Au(W)] - {CA,(W), Aa(v)] (0 mmutator

CAalv), Axlw)]
Ao (V) Aalw) - Aglw) Aalv)

Commutator



Warning ! Even if J'=° eveywhere,  Qlobal  horitontal  sections May not exish  E-§. toke *he  trivial principal
R- bundle Over $' with A=z Adb , and fibve (oordinare 2 (se A = da+ 2de)

\otal Woriaoaral
sections dexend b N

with stope A (Y

»N—>

Se i Ao, then 7 global horitental  section

1.5 Al gebraic  Shructures

Given O connection A on a G- bundie P->B and a representation p:o - GLCV) , there's an induced COnnection

on +he associaled veCtor bundle € = PxaV
Tts  defined by loal copmection  \- Forms DQP(A“)

Example 3.23: If P is the fame bundle of some vecowr bundle F, en  a connection on P induces

Connections on FY, FOFY, erc.

Can also exiend ine covariant  derivative d’t to an exterior Covariant derivative  using #ne Leibnit rule :on

E vawed p-form o Can locally be written as a Sum of expressions S @ « where S is @ Secton oF E
oA

and & is a p-form . Then define d (s€x) Io be (dds) Ao + SO du

Proposition  3-2¢  ((second) Bianchi identity) dF =0

oA
(Here ¥ is an adP - valued 2-form on B , and d s the exterior covariant  derivative)

?mf-. Locally in a trivialisarion , we weive F as Fy , & d-valued 2-form . Then locally

dd"’= dfy + (adA«)N Fy

eqmive = DRp i asis conitext

= dvg + CAaht4l

: dAg 4+ 3 dC Aa AA) + [Ag AdA] ¥ [aun 10 AcAAG]]

-—~~ - e ~N—

1
0 sice dlzo =5 by Jacobi ('df,ﬂh‘h}

-\7_ d(AahA): 1.1 [ dAx A AK]—%[AU““‘]

2 = CAahdAa)
o Yeyms cancel ouh-

\Numina‘_ (dd)z*o n general-  In fack, (dd)zﬁ = Def(F)I\G'
} ——

€ - valued End(€)- vatued
p-fwm 2- fom



RIEMANNIAN GEOMETRY
8.1 Metrics
Given 0 vechs bundle E—8, Sections of (E')® Correspond to  Pioewise bilinear fums on E.

Definition 8.1:  An  janer product g o E is a section of (Y)° which s Fiorewise Symmetric  and  positive  definite

(ie. an oner product on each  fipre).

R Riemannian metit on X s an inner produtt on TX.

lemma 8.2: Eveny vethr bundie E 8 oadmits  an imer prduck. Hene  euewy  Wanifld admits a  Riemamnian yedcic
prof: Cover E with  bevialisations a: v (Ua) > Uaxm®

on eath W '(Ua)  4heres an inmer product u Corcespording 4o ¢he Standard  janer prduct on R* . Take a parkitien
o unity fpal and st 9= ZpuQa.

Definition 8.3: A Riemasnian  manifold ( X, 5) i  a wmanifold eguipped Wwith a Riemannian metric.
Wire  9=9a - lev g* be the dual wemic , defined by g": g™ 3“ Gpe = S«
Write ContracHon  with Yav ,3"' by mising/ lowering indices

ad

R.9. 9“ T.bc = T e

NokaYion - d-:."d-u..’ = l,_ (dv."Od'l’ + dd adu")

Definition 8-4: A Comection GA on E is  (ompativle with an inner product ¢ if g s Covariandy constant
2
wrt e induced (Connection on (€ v)e

8.2 Connections on TX
Fix a manifld X

Definition 8-5: A (onnection on X is a Conneclion on TX-  We'll think of ‘this as a  connection on E, where E
s identified with TX Via an E-valued 1.-fom 6

fr 2EX, On € Ex @ THX = Hom( Tx\(,Ex) Usually the covariant dernative is \eitten 9 , and its  Coanection Wwith

a vechor v is  weitken Y. In  local wordinates, ¢ = 9 8dx'
Definition $-b = The torsion of o connection A en E=TX s d‘*& , 6n  E-valued 2-fRom.
(Sheel- Y . QW -V = Cwwls 1 (v,w))

The Connection is called  Jorsion Free 3¢ T =0-



Poposition 83 (Fisk  pianchi  identity) d* 1 = Tre , where Fois 4ne End(E) -vaed wwanve 2 -bim on X.

proct: bt sdes ace  (d%)%g |:|

Theorem 2.8 ( Fundamental Theorem of Riemannian  Gieometny)

Given a Riemamian manifold (X, 9), theres a Unique tusien free  connection on X Compativie  with g .

This is hnown as the  Levi- Ciwta  Connection

prof:  We'll  show that e  map

g- tompatibre > i € -valued
coanections 7 foms

\ﬁ ‘;1“

S o bi) eClion.

Let Fo(E) be the orthogonal frame bundle of E - & principal  0(h) - bundle .  Note hat g s an associaved
VeCwor bundle of FoCE), E= TE Yy R"  via dwe representotion  of o(n). So (ormections on Fo(E) induce
Connections on € is comparible  with 9q iff i arises in +nis way (Example cheet 4)

Fix a connedion 0‘& on Fo(E) .. \we get a bijection

3 - Compatible  Connectiens on x'} —_— 1 ad %o (E) - vaiued \-forms on \(}

A

a:= A -(Ao
5:&‘4 o

We olse have ad Fo(E) ¥ O(E) = i Skew - adjoint ¢ ndomorphisms OFE}
So ils (efF 49 show that

% O(€) -valued 1- forms onXy — T € - valued ""F"""“} is a bijection

Avr— T

Aotd TA.

can M.\n.v\ge Jealars.
We can view both bundles as subbundies of TX @ T¥x ® T*x  of rank T P(n)

Nove 50(5) -valued 121 -&ums} s 7 s«“a?l A" be 0of TX @ T*x @1 x

qu Ay + 9db A“‘_ -0 ie Aape *

f E - valued 'I.-I!wms} s i Aabc : Aabt s 'A““}

And the  map A T(A’.“A - T.A.

s A (ANE),, T A% - A%



which is  fibrewise lincar, so it suffices to prve jts a Ffibrewise isomorphism. Since Yoth have

sufficient 4o prve the moap is Fibrewise Injeckive

the same ronk,

its

[
So Suppose A sansfies Aawe = - Apac and it's in Yhe hernel, ie. A% = Avc . Wwe wont o show A 0.

We have Aqbt s 'Abac : - Abcq s Acba = Acab = ‘Aucb =~ Aavnt 0 Hevnatelia Wr,r,ua 2 e_qua.l’\'w
do oy mduwo areund.

So Aak = -fabc & A=-A > Aczo0.

Giiven  \ocal  cawdinares on X, get @  trivialisatan  of E= TX . The (omponents OoF 4he associoted local

nnection |- forms are the Christoffel  symbeols: r JK

- a
Definition  3.9: The curvature of the Levi - Civita  Connection is the Miemann Tensor R ° R bed

This 1S an O (E) - valued 2 -form on X, g0 we can view # as a tensor of qype (1,3).

8.4  Hodge Theony

Let (\(,3) be an oriented Riemannan manifold. The mebic g induces inner  products on each A TYx.

( W oy dn  Qre  orthonormal |- Forms | then give a fibrewise orthonormal  pasis for AP T"X).

We get o distinguished  Volume fum  w, defined by being  positively oriented  and of unit lenghh.
Given a  p-form P, iweres O unigue  (n-p) -Fum ¥p, stV p-foms a,
A th oz Loa,pOw
Definition 8-10: The map +: 0°(X) - n°(X) s 4he  Hodge Stor operator
Tt's a fibrewise  linear  isometny APT*x = A1 hat squares b C -l)m-"

) - 3
Example 8-1: Take R> with +ne standard  oriendation and metic. So wt dx'adxadx® | gng ¥ da'= dxiadx)
and ¥ dx'adx* = dx®

Now ossume X is Compact- Then we can  define  on inner product on N°(X) via
Lotypox = [ caprw o [, unxp

Given a (p) ~form *x, P foum (b, we 'have
Ldu , pYx =S,‘ o) A% p

: L(d(u Aep) - (-0 m(u)) by Leibmiz

=0 \u3 shokhe s
T (0" J wndCep)

TG LArTIY

]



So dhe operator 5:= (D w'd¥ :Q°(X) > (X)) s adjint 4 d
Definition  8-12: S is calted +he Codifferential .

if 8,&:0, then [ is (oclosed

it p= S«, then Bis  coexact.

(mn cheek S$'= O) easy

Definition 8.13: The Loplace - Beltami operator is O:= d§ +8d = (d+8)*
A:0%%) »t(X).

I Aot =0, then we say o is  harmonic.
Write HP? foc the space  of harmonic p-forms
Example sheet 4: o is harmonic ¢ o is closed ond Coclosed.

Theorem  8.1¢ (Hodge) - The wap () — Har () iS an isomorphism.
o — («]

[}

Tdea : Hae®(X) = ®“4y = Keedaima®
: herd aker$
= HA( !

Theorem 815  ( Hodge decompesition)

For all p, %’(X) is fisite dimensional, and Wwe get Orthogonal  decompasitions

0P(x)

“

H'(x) @ AN
() @ dsaf(x) @ §d.0.°(x)

* #°(X) @ dat' (M e saf(x)



